%I
%S 1,0,1,0,2,0,3,1,5,1,7,2,11,3,15,5,21,7,28,11,38,15,49,21,65,28,82,38,
%T 105,49,131,65,164,82,201,105,248,131,300,164,364,201,436,248,522,300,
%U 618,364,733,436,860,522,1009,618,1175,733,1367,860,1579,1009,1824,1175,2093,1367,2400,1579,2738,1824,3120,2093,3539,2400,4011
%N Molien series for invariants of finite Coxeter group D_7.
%C The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1x^(1+m_i)) where the m_i are [1,3,5,...,2k3,k1]. If k is even only even powers of x appear, and we bisect the sequence.
%D J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
%H <a href="/index/Mo#Molien">Index entries for Molien series</a>
%F G.f.: 1/((1t^7)*(1t^2)*(1t^4)*(1t^6)*(1t^8)*(1t^10)*(1t^12)).
%Y Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770A266775.
%K nonn
%O 0,5
%A _N. J. A. Sloane_, Jan 10 2016
