

A266768


Molien series for invariants of finite Coxeter group D_5.


10



1, 0, 1, 0, 2, 1, 3, 1, 5, 2, 7, 3, 10, 5, 13, 7, 18, 10, 23, 13, 30, 18, 37, 23, 47, 30, 57, 37, 70, 47, 84, 57, 101, 70, 119, 84, 141, 101, 164, 119, 192, 141, 221, 164, 255, 192, 291, 221, 333, 255, 377, 291, 427, 333, 480, 377, 540, 427, 603, 480, 674, 540, 748, 603, 831, 674, 918, 748, 1014, 831, 1115, 918, 1226, 1014, 1342, 1115
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1x^(1+m_i)) where the m_i are [1,3,5,...,2k3,k1]. If k is even only even powers of x appear, and we bisect the sequence.


REFERENCES

J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.


LINKS

Table of n, a(n) for n=0..75.
Index entries for Molien series


FORMULA

G.f. = 1/((1t^5)*(1t^2)*(1t^4)*(1t^6)*(1t^8)).


CROSSREFS

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770A266775.
Sequence in context: A257111 A011129 A262364 * A154279 A065370 A147783
Adjacent sequences: A266765 A266766 A266767 * A266769 A266770 A266771


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Jan 10 2016


STATUS

approved



