login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266764 Growth series for affine Coxeter group (or affine Weyl group) D_9. 0
1, 10, 54, 211, 669, 1827, 4456, 9942, 20638, 40357, 75043, 133663, 229368, 380976, 614836, 967138, 1486741, 2238597, 3307855, 4804735, 6870266, 9682988, 13466724, 18499534, 25123969, 33758748, 44911987, 59196114, 77344609, 100230715, 128888272, 164534832, 208597219, 262739703, 328894963, 409298018, 506523312, 623525146, 763681655 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. Bourbaki, Groups et Alg├Ębres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

LINKS

Table of n, a(n) for n=0..38.

FORMULA

The growth series for the affine Coxeter group of type D_k (k >= 3) has G.f. = (1-x^{m_k})/((1-x)*Prod_i (1-x^{m_i})) where the m_i are [1,3,5,...,2k-3,k-1].

CROSSREFS

The growth series for the affine Coxeter groups D_3 through D_12 are A005893 and A266759-A266767.

Sequence in context: A161755 A053347 A267172 * A036600 A058645 A170940

Adjacent sequences:  A266761 A266762 A266763 * A266765 A266766 A266767

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 18:03 EDT 2019. Contains 328102 sequences. (Running on oeis4.)