This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266712 Coefficient of x^2 in the minimal polynomial of the continued fraction [1^n,sqrt(2),1,1,...], where 1^n means n ones. 5
 -5, -7, -7, 115, 607, 4615, 30427, 211687, 1442695, 9909907, 67867135, 465315847, 3188935867, 21858303175, 149816390407, 1026863749555, 7038210692767, 48240661271047, 330646286854555, 2266283690589607, 15533338646986375, 106467089195295187 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A265762 for a guide to related sequences. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1). FORMULA a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5). G.f.:  (5 -18*x -103*x^2 -180*x^3 -7*x^4 +280*x^5 +56*x^6 -14*x^7)/(-1 + 5*x +15*x^2 -15*x^3 -5*x^4 +x^5). EXAMPLE Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: [sqrt(2),1,1,1,...] has p(0,x) = -1 - 6 x - 5 x^2 + 2 x^3 + x^4, so a(0) = -5; [1,sqrt(2),1,1,1,...] has p(1,x) = 1 + 2 x - 7 x^2 + 2 x^3 + x^4, so a(1) = -7; [1,1,sqrt(2),1,1,1...] has p(2,x) = -9 + 18 x - 7 x^2 - 2 x^3 + x^4, so a(2) = -7. MATHEMATICA u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2]}, {{1}}]; f[n_] := FromContinuedFraction[t[n]]; t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}]; Coefficient[t, x, 0] ; (* A266710 *) Coefficient[t, x, 1];  (* A266711 *) Coefficient[t, x, 2];  (* A266712 *) Coefficient[t, x, 3];  (* A266713 *) Coefficient[t, x, 4];  (* A266710 *) LinearRecurrence[{5, 15, -15, -5, 1}, {-5, -7, -7, 115, 607, 4615, 30427, 211687}, 30] (* G. C. Greubel, Jan 26 2018 *) PROG (PARI) x='x+O('x^30); Vec((5 -18*x -103*x^2 -180*x^3 -7*x^4 +280*x^5 +56*x^6 -14*x^7)/(-1 + 5*x +15*x^2 -15*x^3 -5*x^4 +x^5)) \\ G. C. Greubel, Jan 26 2018 (MAGMA) I:=[115, 607, 4615, 30427, 211687]; [-5, -7, -7] cat [n le 5 select I[n] else 5*Self(n-1) + 15*Self(n-2) - 15*Self(n-3) - 5*Self(n-4) + Self(n-5): n in [1..30]]; // G. C. Greubel, Jan 26 2018 CROSSREFS Cf. A265762, A266710, A266711, A266713. Sequence in context: A028316 A019163 A228970 * A021177 A091662 A063006 Adjacent sequences:  A266709 A266710 A266711 * A266713 A266714 A266715 KEYWORD sign,easy AUTHOR Clark Kimberling, Jan 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 20:12 EST 2019. Contains 329961 sequences. (Running on oeis4.)