login
A266563
Decimal expansion of the generalized Glaisher-Kinkelin constant A(16).
19
1, 6, 9, 8, 1, 8, 3, 9, 7, 8, 4, 2, 7, 7, 5, 6, 0, 7, 7, 4, 7, 3, 0, 9, 5, 5, 1, 6, 8, 3, 1, 2, 7, 1, 1, 8, 7, 9, 5, 1, 5, 2, 9, 1, 4, 2, 8, 6, 3, 7, 7, 3, 5, 8, 6, 0, 2, 7, 1, 7, 5, 9, 5, 5, 0, 0, 0, 7, 5, 4, 2, 1, 7, 6, 0, 8, 8, 8, 8, 0, 1, 4, 7, 1, 9, 3, 5, 6, 7, 0, 8, 2
OFFSET
0,2
COMMENTS
Also known as the 16th Bendersky constant.
LINKS
FORMULA
A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(16) = exp((B(16)/4)*(zeta(17)/zeta(16))) = exp(-zeta'(-16)).
A(16) = exp(-16! * Zeta(17) / (2^17 * Pi^16)). - Vaclav Kotesovec, Jan 01 2016
EXAMPLE
0.16981839784277560774730955168312711879515291428637735860...
MATHEMATICA
Exp[N[(BernoulliB[16]/4)*(Zeta[17]/Zeta[16]), 200]]
CROSSREFS
Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
Sequence in context: A019696 A119801 A191608 * A335028 A153603 A198557
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 31 2015
STATUS
approved