The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266557 Decimal expansion of the generalized Glaisher-Kinkelin constant A(10). 19
 1, 0, 1, 9, 1, 1, 0, 2, 3, 3, 3, 2, 9, 3, 8, 3, 8, 5, 3, 7, 2, 2, 1, 6, 4, 7, 0, 4, 9, 8, 6, 2, 9, 7, 5, 1, 3, 5, 1, 3, 4, 8, 1, 3, 7, 2, 8, 4, 0, 9, 9, 6, 0, 4, 4, 5, 9, 6, 4, 1, 4, 9, 4, 6, 7, 6, 5, 5, 4, 2, 8, 9, 5, 9, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Also known as the 10th Bendersky constant. LINKS G. C. Greubel, Table of n, a(n) for n = 1..2002 FORMULA A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann Zeta function. A(10) = exp(-zeta'(-10)) = exp((B(10)/4)*(zeta(11)/zeta(10))). A(10) = exp(10! * Zeta(11) / (2^11 * Pi^10)). - Vaclav Kotesovec, Jan 01 2016 EXAMPLE 1.01911023332938385372216470498629751351348137284099604... MATHEMATICA Exp[N[(BernoulliB[10]/4)*(Zeta[11]/Zeta[10]), 200]] CROSSREFS Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)). Cf. A013668, A013669, A266261, A027641, A027642. Sequence in context: A176522 A219732 A259314 * A010534 A078297 A189788 Adjacent sequences:  A266554 A266555 A266556 * A266558 A266559 A266560 KEYWORD nonn,cons AUTHOR G. C. Greubel, Dec 31 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 15:05 EST 2020. Contains 332137 sequences. (Running on oeis4.)