

A266555


Decimal expansion of the generalized GlaisherKinkelin constant A(8).


19



9, 9, 1, 7, 1, 8, 3, 2, 1, 6, 3, 2, 8, 2, 2, 1, 9, 6, 9, 9, 9, 5, 4, 7, 4, 8, 2, 7, 6, 5, 7, 9, 3, 3, 3, 9, 8, 6, 7, 8, 5, 9, 7, 6, 0, 5, 7, 3, 0, 5, 0, 7, 9, 2, 4, 7, 0, 7, 6, 5, 9, 9, 3, 4, 0, 9, 5, 0, 2, 3, 7, 9, 3, 4, 2, 1, 7, 6, 1, 9, 0, 9, 3, 0, 9, 1, 2, 3, 8, 8, 8, 6, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Also known as the 8th Bendersky constant.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2001


FORMULA

A(k) = exp(H(k)*B(k+1)/(k+1)  zeta'(k)), where B(k) is the kth Bernoulli number, H(k) the kth harmonic number, and zeta'(x) is the derivative of the Riemann Zeta function.
A(8) = zeta'(8) = (B(8)/4)*(zeta(9)/zeta(8)).
A(8) = exp(8! * Zeta(9) / (2^9 * Pi^8)).  Vaclav Kotesovec, Jan 01 2016


EXAMPLE

0.99171832163282219699954748276579333986785976057305079247...


MATHEMATICA

Exp[N[(BernoulliB[8]/4)*(Zeta[9]/Zeta[8]), 200]]


CROSSREFS

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
Cf. A013666, A013667, A259073, A027641, A027642.
Sequence in context: A228788 A019788 A175618 * A145280 A144667 A118428
Adjacent sequences: A266552 A266553 A266554 * A266556 A266557 A266558


KEYWORD

nonn,cons


AUTHOR

G. C. Greubel, Dec 31 2015


STATUS

approved



