login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*a(n-4) + a(n-8) for n >= 8.
4

%I #57 Jan 31 2024 08:04:54

%S 2,-1,2,1,1,3,3,5,4,5,8,11,9,13,19,27,22,31,46,65,53,75,111,157,128,

%T 181,268,379,309,437,647,915,746,1055,1562,2209,1801,2547,3771,5333,

%U 4348,6149,9104,12875,10497,14845,21979,31083,25342,35839,53062,75041,61181,86523

%N a(n) = 2*a(n-4) + a(n-8) for n >= 8.

%C Previous name was: a(2n) = a(2n - 4) + a(2n - 3) and a(2n + 1) = 2*a(2n - 4) + a(2n - 3), with a(0) = 2, a(1) = -1, a(2) = 2, a(3) = 1. Alternatively, interleave denominators (A266504) and numerators (A266505) of convergents to sqrt(2).

%C a(2n) gives all x in N | 2*x^2 - 7(-1)^x = y^2. a(2n+1) gives associated y values.

%H G. C. Greubel, <a href="/A266506/b266506.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,2,0,0,0,1).

%F From _Chai Wah Wu_, Sep 17 2016: (Start)

%F a(n) = 2*a(n-4) + a(n-8) for n > 7.

%F G.f.: (-3*x^7 + x^6 - 5*x^5 + 3*x^4 - x^3 - 2*x^2 + x - 2)/(x^8 + 2*x^4 - 1).

%F (End)

%t CoefficientList[Series[(-3*x^7 + x^6 - 5*x^5 + 3*x^4 - x^3 - 2*x^2 + x - 2)/(x^8 + 2*x^4 - 1), {x, 0, 50}], x] (* _G. C. Greubel_, Jul 27 2018 *)

%o (PARI) x='x+O('x^50); Vec((-3*x^7+x^6-5*x^5+3*x^4-x^3-2*x^2+x-2)/(x^8 + 2*x^4-1)) \\ _G. C. Greubel_, Jul 27 2018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((-3*x^7+x^6-5*x^5+3*x^4-x^3-2*x^2+x-2)/(x^8+2*x^4-1))); // _G. C. Greubel_, Jul 27 2018

%Y Cf. A266504, A266505.

%K sign,easy,less

%O 0,1

%A _Raphie Frank_, Dec 30 2015

%E Edited, new name using given formula, _Joerg Arndt_, Jan 31 2024