Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Sep 08 2022 08:46:15
%S -1,1,3,5,5,11,13,27,31,65,75,157,181,379,437,915,1055,2209,2547,5333,
%T 6149,12875,14845,31083,35839,75041,86523,181165,208885,437371,504293,
%U 1055907,1217471,2549185,2939235,6154277,7095941,14857739,17131117,35869755,41358175,86597249,99847467
%N a(n) = 2*a(n - 2) + a(n - 4) with a(0) = -1, a(1) = 1, a(2) = 3, a(3) = 5.
%C a(n)/A266504(n) converges to sqrt(2).
%C Alternatively, bisection of A266506.
%C Alternatively, A135532(n) and A048655(n) interlaced.
%C Alternatively, A255236(n-1), A054490(n), A038762(n) and A101386(n) interlaced.
%C Let b(n) = (a(n) - (a(n) mod 2))/2, that is b(n) = {-1, 0, 1, 2, 2, 5, 6, 13, 15, 32, 37, 78, 90, ...}. Then:
%C A006451(n) = {b(4n+0) U b(4n+1)} gives n in N such that triangular(n) + 1 is square;
%C A216134(n) = {b(4n+2) U b(4n+3)} gives n in N such that triangular(n) follows form n^2 + n + 1 (twice a triangular number + 1).
%H G. C. Greubel, <a href="/A266505/b266505.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,1).
%F G.f.: (-1 + 3*x)*(1 + x)^2/(1 - 2 x^2 - x^4).
%F a(n) = (-(1+sqrt(2))^floor(n/2)*(-1)^n - sqrt(8)*(1-sqrt(2))^floor(n/2) - (1-sqrt(2))^floor(n/2)*(-1)^n + sqrt(8)*(1+sqrt(2))^floor(n/2))/2.
%F a(n) = 3*(((1+sqrt(2))^floor(n/2)-(1-sqrt(2))^floor(n/2))/sqrt(8)) - (-1)^n*(((1+sqrt(2))^(floor(n/2)-(-1)^n)-(1-sqrt(2))^(floor(n/2)-(-1)^n))/sqrt(8)).
%F a(n) = (3*A000129(floor(n/2)) - A000129(n-(-1)^n)), where A000129 gives the Pell numbers.
%F a(n) = sqrt(2*A266504(n))^2 - 7(-1)^A266504(n))*sgn(2*n -1), where A266504 gives all x in N such that 2*x^2 - 7(-1)^x = y^2. This sequence gives associated y values.
%F a(2n) = (-(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n - (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n) = A135532(n).
%F a(2n) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) - (((1+sqrt(2))^(n-1)-(1-sqrt(2))^(n-1))/sqrt(8)) = A135532(n).
%F a(2n+1) = (+(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n + (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n + 1) = A048655(n).
%F a(2n+1) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) + (((1+sqrt(2))^(n+1)-(1-sqrt(2))^(n+1))/sqrt(8)) = A048655(n).
%F a(4n + 0) = 6*a(4n - 4) - a(4n - 8) = A255236(n-1).
%F a(4n + 1) = 6*a(4n - 3) - a(4n - 7) = A054490(n).
%F a(4n + 2) = 6*a(4n - 2) - a(4n - 6) = A038762(n).
%F a(4n + 3) = 6*a(4n - 1) - a(4n - 5) = A101386(n).
%F (sqrt(2*(a(2n + 1) )^2 + 14*(-1)^floor(n/2)))/2 = A266504(n).
%F (a(2n + 1) + a(2n))/8 = A000129(n), where A000129 gives the Pell numbers.
%F a(2n + 1) - a(2n) = A002203(n), where A002203 gives the companion Pell numbers.
%F (a(2n + 2) + a(2n + 1))/2 = A000129(n+2).
%F (a(2n + 2) - a(2n + 1))/2 = A000129(n-1).
%p a:=proc(n) option remember; if n=0 then -1 elif n=1 then 1 elif n=2 then 3 elif n=3 then 5 else 2*a(n-2)+a(n-4); fi; end: seq(a(n), n=0..50); # _Wesley Ivan Hurt_, Jan 01 2016
%t LinearRecurrence[{0, 2, 0, 1}, {-1, 1, 3, 5}, 70] (* _Vincenzo Librandi_, Dec 31 2015 *)
%t Table[SeriesCoefficient[(-1 + 3 x) (1 + x)^2/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 42}] (* _Michael De Vlieger_, Dec 31 2015 *)
%o (Magma) I:=[-1,1,3,5]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // _Vincenzo Librandi_, Dec 31 2015
%o (PARI) x='x+O('x^30); Vec((-1+3*x)*(1+x)^2/(1-2*x^2-x^4)) \\ _G. C. Greubel_, Jul 26 2018
%Y Cf. A000129, A001333, A002203, A002965, A006451, A006452, A002965, A038761, A038762, A048654, A048655, A054490, A078343, A098586, A098790, A100525, A101386, A135532, A216134, A216162, A253811, A255236, A266504, A266505, A266507.
%K sign,easy
%O 0,3
%A _Raphie Frank_, Dec 30 2015