Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Sep 08 2022 08:46:15
%S 2,2,1,3,4,8,9,19,22,46,53,111,128,268,309,647,746,1562,1801,3771,
%T 4348,9104,10497,21979,25342,53062,61181,128103,147704,309268,356589,
%U 746639,860882,1802546,2078353,4351731,5017588,10506008,12113529,25363747,29244646,61233502
%N a(n) = 2*a(n - 2) + a(n - 4) with a(0) = a(1) = 2, a(2) = 1, a(3) = 3.
%C This sequence gives all x in N | 2*x^2 - 7(-1)^x = y^2. The companion sequence to this sequence, giving y values, is A266505.
%C A266505(n)/a(n) converges to sqrt(2).
%C Alternatively, 1/4*(3*A002203(floor[n/2]) - A002203(n-(-1)^n)), where A002203 gives the Companion Pell numbers, or, in Lucas sequence notation, V_n(2, -1).
%C Alternatively, bisection of A266506.
%C Alternatively, A048654(n -1) and A078343(n + 1) interlaced.
%C Alternatively, A100525(n-1), A266507(n), A038761(n) and A253811(n) interlaced.
%C Let b(n) = (a(n) - a(n)(mod 2))/2, that is b(n) = {1, 1, 0, 1, 2, 4, 4, 9, 11, 23, 26, 55, 64, ...}. Then:
%C A006452(n) = {b(4n+0) U b(4n+1)} gives n in N such that n^2 - 1 is triangular;
%C A216134(n) = {b(4n+2) U b(4n+3)} gives n in N such that n^2 + n + 1 is triangular (indices of Sophie Germain triangular numbers);
%C A216162(n) = {b(4n+0) U b(4n+2) U b(4n+1) U b(4n+3)}, sequences A006452 and A216134 interlaced.
%H G. C. Greubel, <a href="/A266504/b266504.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,1).
%F a(n) = 1/sqrt(8)*(+sqrt(2)*(1+sqrt(2))^(floor(n/2)-(-1)^n)*(-1)^n - 3*(1-sqrt(2))^(floor(n/2)-(-1)^n) + sqrt(2)*(1-sqrt(2))^(floor(n/2)-(-1)^n)*(-1)^n + 3*(1+sqrt(2))^(floor(n/2)-(-1)^n)).
%F a(n) = 1/4*((3*((1+sqrt(2))^floor(n/2)+(1-sqrt(2))^floor(n/2))) - (-1)^n*((1+sqrt(2))^(floor(n/2)-(-1)^n)+(1-sqrt(2))^(floor(n/2)-(-1)^n))).
%F a(2n) = (+sqrt(2)*(1+sqrt(2))^(n-1) - 3 *(1-sqrt(2))^(n-1) + sqrt(2)*(1-sqrt(2))^(n-1) + 3*(1 + sqrt(2))^(n-1))/sqrt(8) = A048654(n -1).
%F a(2n) = 1/4*((3*((1+sqrt(2))^n+(1-sqrt(2))^n)) - ((1+sqrt(2))^(n-1)+(1-sqrt(2))^(n-1))) = A048654(n -1).
%F a(2n + 1) = (-sqrt(2)*(1+sqrt(2))^(n+1) - 3 *(1-sqrt(2))^(n+1) - sqrt(2)*(1-sqrt(2))^(n+1) + 3*(1+sqrt(2))^(n+1))/sqrt(8) = A078343(n + 1).
%F a(2n + 1) =1/4*((3*((1+sqrt(2))^n+(1-sqrt(2))^n)) + ((1+sqrt(2))^(n+1)+(1-sqrt(2))^(n+1))) = A078343(n + 1).
%F a(4n + 0) = 6*a(4n - 4) - a(4n - 8) = A100525(n-1).
%F a(4n + 1) = 6*a(4n - 3) - a(4n - 7) = A266507(n).
%F a(4n + 2) = 6*a(4n - 2) - a(4n - 6) = A038761(n).
%F a(4n + 3) = 6*a(4n - 1) - a(4n - 5) = A253811(n).
%F sqrt(2*a(n)^2 - 7(-1)^a(n))*sgn(2*n - 1) = A266505(n).
%F (a(2n + 1) + a(2n))/2 = A002203(n), where A002203 gives the companion Pell numbers.
%F (a(2n + 1) - a(2n))/2 = A000129(n), where A000129 gives the Pell numbers.
%F (a(2n+2) + a(2n+1))*2 = A002203(n+2)
%F (a(2n+2) - a(2n+1))*2 = A002203(n-1).
%F G.f.: (1-x)*(2+4*x+x^2) / (1-2*x^2-x^4). - _Colin Barker_, Dec 31 2015
%t LinearRecurrence[{0, 2, 0, 1}, {2, 2, 1, 3}, 70] (* _Vincenzo Librandi_, Dec 31 2015 *)
%t Table[SeriesCoefficient[(1 - x) (2 + 4 x + x^2)/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 41}] (* _Michael De Vlieger_, Dec 31 2015 *)
%o (Magma) I:=[2,2,1,3]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // _Vincenzo Librandi_, Dec 31 2015
%o (PARI) Vec((1-x)*(2+4*x+x^2)/(1-2*x^2-x^4) + O(x^50)) \\ _Colin Barker_, Dec 31 2015
%Y Cf. A000129, A001333, A002203, A002965, A006451, A006452, A002965, A038761, A038762, A048654, A048655, A054490, A078343, A098586, A098790, A100525, A101386, A135532, A216134, A216162, A253811, A255236, A266504, A266505, A266507.
%K nonn,easy
%O 0,1
%A _Raphie Frank_, Dec 30 2015