login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266484 E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ]^(1/N). 8
1, 1, 11, 316, 15741, 1140376, 109350271, 13100626176, 1886686497401, 317762099341696, 61318533545522451, 13343942849386863616, 3233753469962945660341, 863794149132594286734336, 252178372791563562485494151, 79890921514691257167186558976, 27298165065421976828646695794161, 10007689235634878438090676073824256, 3918413783588692571816707646546345371, 1631982989611299844119224469019967225856, 720447625733586591482575137323090206302701 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N)  =  Sum_{n>=0} (n+1)^(n-1) * x^n/n!.

LINKS

Table of n, a(n) for n=0..20.

EXAMPLE

E.g.f.: A(x) = 1 + x + 11*x^2/2! + 316*x^3/3! + 15741*x^4/4! + 1140376*x^5/5! + 109350271*x^6/6! + 13100626176*x^7/7! + 1886686497401*x^8/8! + 317762099341696*x^9/9! + 61318533545522451*x^10/10! +...

where A(x) equals the limit, as N -> oo, of the series

[1 + (N+1)^5*(x/N^4) + (N+2)^10*(x/N^4)^2/2! + (N+3)^15*(x/N^4)^3/3! + (N+4)^20*(x/N^4)^4/4! + (N+5)^25*(x/N^4)^5/5! + (N+6)^30*(x/N^4)^6/6! +...]^(1/N).

PROG

(PARI) /* Informal listing of terms 0..30 */

\p500

P(n) = sum(k=0, 32, (n+k)^(5*k) * x^k/k! +O(x^32))

Vec(round(serlaplace( subst(P(10^100)^(1/10^100), x, x/10^400) )*1.) )

CROSSREFS

Cf. A266481, A266482, A266483, A266485, A266486.

Sequence in context: A106827 A276977 A176285 * A219979 A115609 A166053

Adjacent sequences:  A266481 A266482 A266483 * A266485 A266486 A266487

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 30 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 07:37 EDT 2020. Contains 336368 sequences. (Running on oeis4.)