The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266297 Numbers whose last digit is a square. 1
 0, 1, 4, 9, 10, 11, 14, 19, 20, 21, 24, 29, 30, 31, 34, 39, 40, 41, 44, 49, 50, 51, 54, 59, 60, 61, 64, 69, 70, 71, 74, 79, 80, 81, 84, 89, 90, 91, 94, 99, 100, 101, 104, 109, 110, 111, 114, 119, 120, 121, 124, 129, 130, 131, 134, 139, 140, 141, 144, 149 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Numbers ending in 0, 1, 4 and 9. Union of A008592, A017281, A017317 and A017377. - Hurt None of these numbers are prime in Z[phi] (where phi = 1/2 + sqrt(5)/2 is the golden ratio), since the numbers in this sequence that are prime in Z can be expressed in the form (a - b sqrt(5))(a + b sqrt(5)). - Alonso del Arte, Dec 30 2015 Union of A197652 and A016897. - Wesley Ivan Hurt, Dec 31 2015 Union of A146763 and A090771. - Wesley Ivan Hurt, Jan 01 2016 LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA G.f.: x^2*(1 + 3*x + 5*x^2 + x^3)/((x - 1)^2*(1 + x + x^2 + x^3)). a(n) = a(n - 1) + (n - 4) - a(n - 5) for n > 5. a(n) = (10n - 11 + (-1)^n + (4 + 2(-1)^n) * (-1)^((2n - 1 + (-1)^n)/4))/4. a(n+1) - a(n) = A091084(n+1) for n>0. MAPLE A266297:=n->(10*n-11+(-1)^n+(4+2*(-1)^n)*(-1)^((2*n-1+(-1)^n)/4))/4: seq(A266297(n), n=1..100); MATHEMATICA Table[(10 n - 11 + (-1)^n + (4 + 2 (-1)^n)*(-1)^((2 n - 1 + (-1)^n)/4))/4, {n, 50}] (* G. C. Greubel, Dec 27 2015 *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 4, 9, 10}, 60] (* Vincenzo Librandi, Dec 27 2015 *) CoefficientList[Series[x*(1 + 3*x + 5*x^2 + x^3)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Dec 30 2015 *) Flatten[Table[10n + {0, 1, 4, 9}, {n, 0, 19}]] (* Alonso del Arte, Dec 30 2015 *) Select[Range[0, 150], MemberQ[{0, 1, 4, 9}, Mod[#, 10]]&] (* Harvey P. Dale, Jul 30 2019 *) PROG (MAGMA) [(10*n-11+(-1)^n+(4+2*(-1)^n)*(-1)^((2*n-1+(-1)^n) div 4))/4: n in [1..60]]; // Vincenzo Librandi, Dec 27 2015 (PARI) is(n) = issquare(n%10); \\ Altug Alkan, Dec 29 2015 CROSSREFS Cf. A008592, A016897, A017281, A017317, A017377, A090771, A091084, A141158, A146763, A197652. Sequence in context: A161913 A020673 A166498 * A174800 A062371 A046030 Adjacent sequences:  A266294 A266295 A266296 * A266298 A266299 A266300 KEYWORD nonn,easy,base AUTHOR Wesley Ivan Hurt, Dec 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 02:09 EDT 2020. Contains 336441 sequences. (Running on oeis4.)