login
A266257
Total number of ON (black) cells after n iterations of the "Rule 11" elementary cellular automaton starting with a single ON (black) cell.
3
1, 2, 4, 9, 11, 20, 22, 35, 37, 54, 56, 77, 79, 104, 106, 135, 137, 170, 172, 209, 211, 252, 254, 299, 301, 350, 352, 405, 407, 464, 466, 527, 529, 594, 596, 665, 667, 740, 742, 819, 821, 902, 904, 989, 991, 1080, 1082, 1175, 1177, 1274, 1276, 1377, 1379
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Dec 27 2015 and Apr 14 2019: (Start)
a(n) = ((n+1)^2-(-1)^n*(n-1))/2.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>4.
G.f.: (1+x+3*x^3-x^4) / ((1-x)^3*(1+x)^2).
(End)
MATHEMATICA
rule=11; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc, k]], {k, 1, rows}] (* Number of Black cells through stage n *)
CROSSREFS
Cf. A266253.
Sequence in context: A047348 A186699 A093859 * A115905 A292769 A307997
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 25 2015
EXTENSIONS
Conjectures from Colin Barker, Apr 14 2019
STATUS
approved