login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266256 Number of ON (black) cells in the n-th iteration of the "Rule 11" elementary cellular automaton starting with a single ON (black) cell. 3

%I

%S 1,1,2,5,2,9,2,13,2,17,2,21,2,25,2,29,2,33,2,37,2,41,2,45,2,49,2,53,2,

%T 57,2,61,2,65,2,69,2,73,2,77,2,81,2,85,2,89,2,93,2,97,2,101,2,105,2,

%U 109,2,113,2,117,2,121,2,125,2,129,2,133,2,137,2,141

%N Number of ON (black) cells in the n-th iteration of the "Rule 11" elementary cellular automaton starting with a single ON (black) cell.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

%H Robert Price, <a href="/A266256/b266256.txt">Table of n, a(n) for n = 0..999</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Dec 27 2015 and Apr 14 2019: (Start)

%F a(n) = (-2*((-1)^n-1)*n+3*(-1)^n+1)/2 for n>0.

%F a(n) = 2*a(n-2)-a(n-4) for n>4.

%F G.f.: (1+x+3*x^3-x^4) / ((1-x)^2*(1+x)^2).

%F (End)

%t rule=11; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[Total[catri[[k]]],{k,1,rows}] (* Number of Black cells in stage n *)

%Y Cf. A266253.

%K nonn,easy

%O 0,3

%A _Robert Price_, Dec 25 2015

%E Conjectures from _Colin Barker_, Apr 14 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 09:58 EDT 2020. Contains 334840 sequences. (Running on oeis4.)