Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Dec 23 2015 17:40:01
%S 1,2,3,16,5,726,7,40328,60489,2419210,11,399168012,13,11623772174,
%T 980755776015,1801684684816,17,4883080262860818,19,413207166468096020,
%U 28738654971586560021,792945839702016022,23,416305010716751226470424,129260083694424883200025,10345780628548485120026,1837496719758096927129600027
%N E.g.f.: Sum_{n>=1} x^(n^2) * exp(n*x^n) / n!.
%e E.g.f.: A(x) = x + 2*x^2/2! + 3*x^3/3! + 16*x^4/4! + 5*x^5/5! + 726*x^6/6! + 7*x^7/7! + 40328*x^8/8! + 60489*x^9/9! + 2419210*x^10/10! +...
%e where
%e A(x) = x*exp(x) + x^4*exp(2*x^2)/2! + x^9*exp(3*x^3)/3! + x^16*exp(4*x^4)/4! + x^25*exp(5*x^5)/5! + x^36*exp(6*x^6)/6! +...
%o (PARI) {a(n) = local(A=1); A = sum(m=1, n, x^(m^2) * exp(m*x^m +x*O(x^n)) / m!); n!*polcoeff(A, n)}
%o for(n=1, 30, print1(a(n), ", "))
%Y Cf. A259209, A259223, A265943, A265270.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Dec 23 2015