login
A266211
E.g.f.: Sum_{n>=1} x^(n^2) * exp(n*x^n) / n!.
1
1, 2, 3, 16, 5, 726, 7, 40328, 60489, 2419210, 11, 399168012, 13, 11623772174, 980755776015, 1801684684816, 17, 4883080262860818, 19, 413207166468096020, 28738654971586560021, 792945839702016022, 23, 416305010716751226470424, 129260083694424883200025, 10345780628548485120026, 1837496719758096927129600027
OFFSET
1,2
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 3*x^3/3! + 16*x^4/4! + 5*x^5/5! + 726*x^6/6! + 7*x^7/7! + 40328*x^8/8! + 60489*x^9/9! + 2419210*x^10/10! +...
where
A(x) = x*exp(x) + x^4*exp(2*x^2)/2! + x^9*exp(3*x^3)/3! + x^16*exp(4*x^4)/4! + x^25*exp(5*x^5)/5! + x^36*exp(6*x^6)/6! +...
PROG
(PARI) {a(n) = local(A=1); A = sum(m=1, n, x^(m^2) * exp(m*x^m +x*O(x^n)) / m!); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 23 2015
STATUS
approved