login
A266190
Self-inverse permutation of nonnegative integers: a(n) = A264985(A263273(A264985(n))).
6
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 19, 12, 13, 14, 15, 16, 17, 24, 11, 69, 21, 25, 23, 18, 22, 26, 31, 28, 73, 30, 27, 46, 33, 55, 58, 37, 36, 64, 39, 40, 41, 42, 43, 44, 51, 32, 150, 48, 52, 50, 45, 49, 53, 78, 34, 213, 57, 35, 204, 60, 61, 231, 75, 38, 210, 66, 79, 68, 20, 70, 77, 72, 29, 207, 63, 76, 71, 54, 67, 80, 94, 85, 235
OFFSET
0,3
COMMENTS
A263273 conjugated with the permutation obtained from its odd bisection.
FORMULA
a(n) = A264985(A263273(A264985(n))).
As a composition of related permutations:
a(n) = A265353(A264985(n)).
a(n) = A264985(A265354(n)).
MATHEMATICA
f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@ g[n] h[n]]]; s = Select[f /@ Range@ 5000, OddQ]; t = Table[(s[[n + 1]] - 1)/2, {n, 0, 1000}]; Table[t[[f[t[[n + 1]]] + 1]], {n, 0, 83}] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A263273 *)
PROG
(Scheme) (define (A266190 n) (A264985 (A263273 (A264985 n))))
CROSSREFS
Cf. A265369, A265904, A266401, A266403 (other conjugates or similar derivations of A263273).
Cf. also A266189.
Sequence in context: A073294 A073295 A191656 * A340625 A347644 A265572
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Jan 02 2016
STATUS
approved