

A266152


Least positive integer y such that n = x^4  y^3 + z^2 for some positive integers x and z, or 0 if no such y exists.


14



8, 1, 2, 17, 1, 3, 139, 19, 37, 1, 3, 9, 2, 7, 3, 1411, 1, 2, 2, 1, 5, 4, 387, 3, 1, 1, 4, 7, 9, 2, 35, 1, 33, 2, 6, 5, 1, 4, 3, 11, 1, 6, 2, 429, 2, 5, 11, 179, 73, 1, 15, 1, 4, 3, 11, 3, 5, 2, 3, 15, 5, 6, 7, 3, 1, 6, 4, 6337, 8, 16, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Conjecture: Any integer m can be written as x^4  y^3 + z^2, where x, y and z are positive integers.
This is slightly stronger than the conjecture in A266003.
See also A266153 for a related sequence, and A266212 for a stronger conjecture.
If n is a positive square, then a(n) = 1.  Altug Alkan, Dec 23 2015


LINKS

ZhiWei Sun, Table of n, a(n) for n = 0..10000
ZhiWei Sun, Checking the conjecture for integers m with m <= 10^5
ZhiWei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97120.


EXAMPLE

a(0) = 8 since 0 = 4^4  8^3 + 16^2.
a(6) = 139 since 6 = 36^4  139^3 + 1003^2.
a(15) = 1411 since 15 = 119^4  1411^3 + 51075^2.
a(11019) = 71383 since 11019 = 4325^4  71383^3 + 3719409^2.


MATHEMATICA

SQ[n_]:=SQ[n]=n>0&&IntegerQ[Sqrt[n]]
Do[y=1; Label[bb]; Do[If[SQ[n+y^3x^4], Print[n, " ", y]; Goto[aa]], {x, 1, (n+y^3)^(1/4)}]; y=y+1; Goto[bb]; Label[aa]; Continue, {n, 0, 70}]


CROSSREFS

Cf. A000290, A000578, A000583, A262827, A266003, A266004, A266153, A266212.
Sequence in context: A156944 A227424 A248965 * A021127 A010155 A019607
Adjacent sequences: A266149 A266150 A266151 * A266153 A266154 A266155


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Dec 22 2015


STATUS

approved



