

A266148


Number of ndigit primes in which n1 of the digits are 9's.


11



4, 6, 7, 7, 8, 10, 7, 13, 8, 8, 11, 13, 8, 11, 13, 14, 10, 9, 7, 11, 9, 13, 10, 19, 5, 10, 14, 7, 10, 9, 9, 15, 13, 8, 7, 9, 10, 11, 10, 13, 5, 12, 15, 7, 12, 7, 12, 11, 13, 11, 8, 13, 13, 13, 12, 12, 9, 9, 15, 14, 9, 8, 13, 11, 15, 17, 10, 8, 11, 10, 6, 16, 8, 8, 8, 15, 9, 11, 14, 7, 10, 11, 16, 17, 11, 10, 12, 16, 8, 15, 7, 11, 11, 10, 7, 12, 6, 10, 8, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The other digit cannot be 0, 3, 6, or 9, or else the number would not be prime.  N. J. A. Sloane, May 20 2016


LINKS

Dana Jacobsen, Table of n, a(n) for n = 1..2500 (first 1215 terms from Michael De Vlieger and Robert G. Wilson v)


EXAMPLE

a(3) = 7 since 199, 499, 599, 919, 929, 991 and 997 are all the threedigit primes containing two 9's.


MATHEMATICA

f9[n_] := Block[{cnt = k = 0, r = 9 (10^n  1)/9, s = Range[0, 9]  9}, While[k < n, cnt += Length@ Select[r + 10^k * s, PrimeQ@ # && IntegerLength@ # > k &]; k++]; cnt]; Array[f9, 100]


PROG

(Python)
from sympy import isprime
def A266148(n):
return sum(1 for d in range(9, 1) for i in range(n) if isprime(10**n1+d*10**i)) # Chai Wah Wu, Dec 31 2015
(Perl) use ntheory ":all"; sub a266148 { my $n = shift; vecsum( map { my $k=$_; scalar grep { is_prime("9" x $k . $_ . "9" x ($n$k1)) } 0+($k>0) .. 8 } 0 .. $n1 ); } # Dana Jacobsen, Jan 01 2016


CROSSREFS

Cf. A265733, A266141, A266142, A266143, A266144, A266145, A266146, A266147, A266149, A095714, A089675.
Sequence in context: A288179 A198882 A000703 * A011275 A205684 A006185
Adjacent sequences: A266145 A266146 A266147 * A266149 A266150 A266151


KEYWORD

base,nonn


AUTHOR

Michael De Vlieger and Robert G. Wilson v, Dec 21 2015


STATUS

approved



