%I #32 Jun 21 2019 10:58:49
%S 1,2,4,8,12,16,32,36,48,64,72,128,144,180,192,256,288,432,512,576,720,
%T 768,900,1024,1152,1296,1728,1800,2048,2304,2592,2880,3072,3600,4096,
%U 4608,5184,6300,6480,6912,7200,8192,9216,10368,10800,11520,12288,14400,15552,16384,18432
%N Smallest integers of each prime signature of prime factorization palindromes (A265640).
%C A subsequence of A025487.
%C According to Hardy and Ramanujan, the number Q(x) of numbers
%C 2^b_2*3^b_3*...*p^b_p <= x, (1)
%C where b_2>=b_3>=...>=b_p, is of order e^(2Pi/sqrt(3)(1+o(1))sqrt(log x/loglog x)).
%C If all b_i=2*c_i are even, then the number of such numbers is Q(sqrt(x)). Note that, if in (1) c_p>0, where p is n-th prime, then c_r>0, r<p. Thus 2*3*...*p_n <= 2^c_2* ... p^c_p <= sqrt(x). By the PNT, 2*3*...*p_n=e^(n+o(n)). Then n<=log(x)/2(1+o(log(x))) and for n>=2 [Dusart], Eq(4.2),
%C p<=e*n*log(n)<e/2*log(x*loglogx). (2)
%C Let K(x) be the number of a(n)<=x, q=nextprime(p). Then K(x)<=Q(sqrt(x))(1+Sum_{prime p}1/p)+1/3, where p satisfies (2) (+1/3, taking into account 1/q).
%C By [Rosser], Sum_{p<=x}1/p=loglog(x)+0.261497...+o(1). Hence K(x)<=Q(sqrt(x))*(loglog(e/2*log(x*loglogx))+1.594830...+o(1)).
%C Asymptotics of K(x) remain open.
%H Amiram Eldar, <a href="/A266047/b266047.txt">Table of n, a(n) for n = 1..10000</a>
%H P. Dusart, <a href="http://arxiv.org/abs/1002.0442">Estimates of some functions over primes without R.H.</a>, arXiv:1002.0442 [math.NT], 2010.
%H G. H. Hardy and S. Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper34/page1.htm">Asymptotic formulas concerning the distribution of integers of various types</a>, Proc. London Math. Soc, Ser. 2, Vol. 16 (1917), pp. 112-132.
%H J. B. Rosser. <a href="http://dx.doi.org/10.2307/2371291">Explicit bounds for some functions of prime numbers</a>. Amer. J. Math. 63 (1941), 211-232.
%Y Cf. A025487, A265640, A265641.
%K nonn
%O 1,2
%A _Vladimir Shevelev_, Dec 20 2015