login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265937 G.f.: Sum_{n>=0} (1 + x)^(n*(n+1)/2) / 2^n. 3
2, 4, 24, 248, 3600, 67296, 1538672, 41593920, 1297683360, 45891815040, 1814072216864, 79263667304640, 3793393788125760, 197339219789611200, 11087608251010390080, 669127189486395204544, 43167108189991530605184, 2964541208087967215725440, 215934869210274766223069440, 16627513858173093851116296960, 1349582577808759197056647917696, 115158206188199564942934814336896, 10305721256666828267464573643658240 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..300

FORMULA

G.f.: Sum_{n>=0} (1+x)^n/2^n * Product_{k=1..n} (2 - (1+x)^(2*k-1))/(2 - (1+x)^(2*k)) due to a q-series identity.

G.f.: 1/(1 - (1+x)/2 /(1 - (1+x)*((1+x)-1)/2 /(1 - (1+x)^3/2 /(1 - (1+x)^2*((1+x)^2-1)/2 /(1 - (1+x)^5/2 /(1 - (1+x)^3*((1+x)^3-1)/2 /(1 - (1+x)^7/2 /(1 - (1+x)^4*((1+x)^4-1)/2 /(1 - ...))))))))), a continued fraction due to a partial elliptic theta function identity.

a(n) = Sum_{k>=(sqrt(8*n+1)-1)/2} binomial(k*(k+1)/2,n) / 2^k.

a(n) = 2*A173219(n). - Vaclav Kotesovec, Oct 08 2019

a(n) ~ 2^(n+1) * n^n / (2^(log(2)/4) * log(2)^(2*n+1) * exp(n)). - Vaclav Kotesovec, Oct 08 2019

EXAMPLE

G.f.: A(x) = 2 + 4*x + 24*x^2 + 248*x^3 + 3600*x^4 + 67296*x^5 + 1538672*x^6 + 41593920*x^7 + 1297683360*x^8 + 45891815040*x^9 + 1814072216864*x^10 +...

where

A(x) = 1 + (1+x)/2 + (1+x)^3/2^2 + (1+x)^6/2^3 + (1+x)^10/2^4 + (1+x)^15/2^5 + (1+x)^21/2^6 + (1+x)^28/2^7 + (1+x)^36/2^8 +...+ (1+x)^(n*(n+1)/2)/2^n +...

MATHEMATICA

Table[Sum[StirlingS1[n, j] * Sum[Binomial[j, s] * HurwitzLerchPhi[1/2, -j - s, 0], {s, 0, j}] / 2^j, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2019 *)

PROG

(PARI) /* Informal listing of terms: */

{Vec( round( sum(n=0, 600, (1+x +O(x^31))^(n*(n+1)/2)/2^n * 1.) ) )}

{Vec( round( sum(n=0, 200, (1.+x)^n/2^n * prod(k=1, n, (2 - (1+x)^(2*k-1)) / (2 - (1+x)^(2*k)) +O(x^21) ) ) ) )}

CROSSREFS

Cf. A265936.

Sequence in context: A190655 A038049 A151817 * A038058 A062531 A141599

Adjacent sequences:  A265934 A265935 A265936 * A265938 A265939 A265940

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 06:32 EDT 2020. Contains 337335 sequences. (Running on oeis4.)