OFFSET
1,1
COMMENTS
Or, primes that are sum of 5 consecutive terms of A002476.
First primes that are sum of 7 consecutive terms of A002476: 211, 271, 331, 457, 523, 727, 883, 1327, 1399, 1567.
First primes that are sum of 11 consecutive terms of A002476: 719, 827, 1049, 1163, 1499, 1619, 1733, 1973, 2087, 3023.
First primes that are sum of 5 and also of 11 consecutive terms of A002476: 11579, 25367, 37253, 49937, 50411, 59183, 69827, 92717.
EXAMPLE
MATHEMATICA
Select[Total /@ Partition[Select[Range[7, 2000, 6], PrimeQ], 5, 1], PrimeQ]
Select[Total/@Partition[Select[Prime[Range[300]], Mod[#, 6]==1&], 5, 1], PrimeQ] (* Harvey P. Dale, Aug 26 2021 *)
PROG
(PARI) list(lim)=my(v=List(), u=[0, 7, 13, 19, 31], t=70); forprime(p=37, , if(p%6>1, next); t+=p-u[1]; if(t>=lim, return(Vec(v))); if(isprime(t), listput(v, t)); u=concat(u[2..5], p)) \\ Charles R Greathouse IV, Dec 18 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Dec 18 2015
STATUS
approved