login
a(1) = 1; for n > 1, a(n) = a(n-1) + A255411(a(n-1)).
6

%I #15 Sep 20 2016 08:53:25

%S 1,5,27,283,2783,27381,289573,3294929,39857103,518345071,13445878403,

%T 294076667433,6072420019897,124655463124661,2601261501948003,

%U 56085731405159779,1245017012007286199,28675043602269632757,682496208885074229469,16855397487443215829585,430393080285140358451479,11389515859337776256294767

%N a(1) = 1; for n > 1, a(n) = a(n-1) + A255411(a(n-1)).

%C In factorial base (A007623) these numbers look as:

%C 1, 21, 1011, 21301, 350321, 5300311, 71310201, 905513221, <the first term with digit-value "10">, ...

%H Antti Karttunen, <a href="/A265907/b265907.txt">Table of n, a(n) for n = 1..120</a>

%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>

%F a(1) = 1; for n > 1, a(n) = a(n-1) + A255411(a(n-1)).

%o (Scheme, with memoization-macro definec)

%o (definec (A265907 n) (if (= 1 n) n (+ (A265907 (- n 1)) (A255411 (A265907 (- n 1))))))

%Y Row 1 of A275960.

%Y Binomial transform of A275965 (when both are considered as offset-0 sequences).

%Y Cf. A007623, A255411.

%Y Cf. A265908 (first differences), A265905 (variant).

%Y Subsequence of A256450.

%K nonn,base

%O 1,2

%A _Antti Karttunen_, Dec 20 2015

%E Note about binomial transform corrected - _Antti Karttunen_, Sep 20 2016