login
A265834
Expansion of Product_{k>=1} 1/(1 - (5*k-4)*x^(5*k-4)).
4
1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 18, 54, 54, 54, 54, 70, 136, 352, 352, 352, 373, 590, 986, 2282, 2282, 2308, 2610, 3912, 6288, 14064, 14095, 14738, 17881, 25693, 39949, 86641, 87449, 93243, 112101, 158973, 244550, 525900, 536105, 585510, 698658, 979936
OFFSET
0,7
LINKS
FORMULA
a(n) ~ c * 6^(n/6), where
c = 1.946161573585465742120451753889110403102785483969509157884... if mod(n,6) = 0
c = 1.492695368258335848636116399838163314228018468452433528714... if mod(n,6) = 1
c = 1.205892633747241909081118546347785156858709648302505136919... if mod(n,6) = 2
c = 1.062580541177612790307764142722360963628515836057478463493... if mod(n,6) = 3
c = 1.098873691517923934789388233817534832428257891275964607033... if mod(n,6) = 4
c = 1.239744254161848837318727201496086964789190390884460407810... if mod(n,6) = 5.
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1/(1 - (5*k-4)*x^(5*k-4)), {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 16 2015
STATUS
approved