The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265778 Numerators of lower primes-only best approximates (POBAs) to sqrt(3); see Comments. 7
 3, 5, 19, 71, 601, 1997, 2579, 3691, 75533, 167543, 175649 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p. Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x. For a guide to POBAs, lower POBAs, and upper POBAs, see A265759. LINKS EXAMPLE The lower POBAs to sqrt(3) start with 3/2, 5/3, 19/11, 71/41, 601/347. For example, if p and q are primes and q > 347, and p/q < sqrt(3), then 601/347 is closer to sqrt(3) than p/q is. MATHEMATICA x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *) Numerator[tL]   (* A265778 *) Denominator[tL] (* A265779 *) Numerator[tU]   (* A265780 *) Denominator[tU] (* A265781 *) Numerator[y]    (* A262582 *) Denominator[y]  (* A265783 *) CROSSREFS Cf. A000040, A265759, A265779, A265780, A265781, A265782, A265783. Sequence in context: A106918 A182357 A181519 * A257866 A251617 A055452 Adjacent sequences:  A265775 A265776 A265777 * A265779 A265780 A265781 KEYWORD nonn,frac,more AUTHOR Clark Kimberling, Dec 20 2015 EXTENSIONS a(9)-a(11) from Robert Price, Apr 05 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 18:11 EST 2020. Contains 338616 sequences. (Running on oeis4.)