login
A265763
Numerators of primes-only best approximates (POBAs) to 3; see Comments.
3
7, 5, 17, 13, 23, 19, 31, 41, 37, 53, 59, 71, 67, 89, 113, 109, 131, 127, 139, 157, 179, 181, 199, 211, 239, 251, 269, 293, 311, 307, 337, 383, 379, 409, 419, 449, 491, 487, 503, 499, 521, 541, 571, 577, 593, 599, 631, 683, 701, 719, 751, 773, 769, 787, 809
OFFSET
1,1
COMMENTS
Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.
EXAMPLE
The POBAs for 3 start with 7/2, 5/2, 17/5, 13/5, 23/7, 19/7, 31/11, 41/13, 37/13, 53/17. For example, if p and q are primes and q > 13, then 41/13 is closer to 3 than p/q is.
MATHEMATICA
x = 3; z = 200; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265763/A265764 *)
Numerator[tL] (* A091180 *)
Denominator[tL] (* A088878 *)
Numerator[tU] (* A094525 *)
Denominator[tU] (* A023208 *)
Numerator[y] (* A265763 *)
Denominator[y] (* A265764 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Clark Kimberling, Dec 18 2015
STATUS
approved