OFFSET
0,4
COMMENTS
a(0) = 0, because no numbers are needed to form an empty sum, which is zero.
It would be nice to know for sure whether this sequence also gives the least number of Pell numbers that add to n, i.e., that there cannot be even better nongreedy solutions.
REFERENCES
A. F. Horadam, Zeckendorf representations of positive and negative integers by Pell numbers, Applications of Fibonacci Numbers, Springer, Dordrecht, 1993, pp. 305-316.
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..13860
L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., Pellian Representations, The Fibonacci Quarterly, Vol. 10, No. 5 (1972), pp. 449-488.
FORMULA
MATHEMATICA
pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; a[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Plus @@ IntegerDigits[Total[3^(s - 1)], 3]]; Array[a, 100, 0] (* Amiram Eldar, Mar 12 2022 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Dec 17 2015
STATUS
approved