This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265731 Powers C^z = A^x + B^y with all positive integers and x,y,z > 1, without multiplicity. 2
 8, 9, 16, 25, 32, 36, 64, 81, 100, 125, 128, 144, 169, 196, 225, 243, 256, 289, 324, 343, 400, 441, 512, 576, 625, 676, 784, 841, 900, 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1521, 1600, 1681, 1728, 1764, 1849, 2025, 2048, 2197, 2304, 2500, 2601, 2704, 2744, 2809, 2916, 3025, 3125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This type of equation is used in the Fermat-Catalan conjecture, the ABC conjecture, etc., of course, with additional restrictions and conditions. LINKS Anatoly E. Voevudko, Table of n, a(n) for n = 1..7253 Anatoly E. Voevudko, Description of all powers in b265731 Anatoly E. Voevudko, Description of all powers in b245713 Anatoly E. Voevudko, Description of all powers in b261782 Wikipedia, abc conjecture Wikipedia, Fermat-Catalan conjecture EXAMPLE 8 = 2^3 = 2^2 + 2^2; 9 = 3^2 = 1^3 + 2^3; 16 = 4^2 = 2^3 + 2^3; etc. PROG (PARI) A265731(lim, bflag=0)={my(Lcz=List(1), Lb=List(), czn, lczn, lbn, lim2=logint(lim, 2), lim3); for(z=2, lim2, lim3=sqrtnint(lim, z); for(C=2, lim3, listput(Lcz, C^z))); Lcz=Set(Lcz); lczn = #Lcz; if(lczn==0, return(-1)); for(i=1, lczn, for(j=i, lczn, czn=Lcz[i]+Lcz[j]; if(czn>lim, break); if(setsearch(Lcz, czn), listput(Lb, czn)))); listsort(Lb, 1);  lbn=#Lb; if(bflag, for(i=1, lbn, print(i , " ", Lb[i]))); if(!bflag, return(Vec(Lb))); } \\ Anatoly E. Voevudko, Nov 23 2015 CROSSREFS Cf. A000290, A245713, A261782, A264901, A265732. Sequence in context: A227649 A227648 A192636 * A227646 A145820 A227647 Adjacent sequences:  A265728 A265729 A265730 * A265732 A265733 A265734 KEYWORD nonn,easy AUTHOR Anatoly E. Voevudko, Dec 14 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 04:26 EDT 2019. Contains 324183 sequences. (Running on oeis4.)