login
A265711
Numbers n such that floor(Sum_{d|n} 1 / sigma(d)) = 1.
9
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73
OFFSET
1,2
COMMENTS
Numbers n such that A265710(n) = floor(A265708(n) / A069934(n)) = floor(A265709(n) / A265710(n)) = 1.
See A265714(n) = the smallest number k such that floor(Sum_{d|k} 1/sigma(d)) = n.
LINKS
EXAMPLE
6 is a term because floor(Sum_{d|6} 1/sigma(d)) = floor(1/1 + 1/3 + 1/4 + 1/12) = floor(5/3) = 1.
MATHEMATICA
Select[Range@ 73, Floor[Sum[1/DivisorSigma[1, d], {d, Divisors@ #}]] == 1 &] (* Michael De Vlieger, Dec 31 2015 *)
PROG
(Magma) [n: n in [1..1000] | Floor(&+[1/SumOfDivisors(d): d in Divisors(n)]) eq 1]
(PARI) isok(n) = floor(sumdiv(n, d, 1/sigma(d))) == 1; \\ Michel Marcus, Dec 27 2015
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 25 2015
STATUS
approved