The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265710 a(n) = denominator of Sum_{d|n} 1/sigma(d). 9
 1, 3, 4, 21, 6, 3, 8, 35, 52, 9, 12, 84, 14, 2, 24, 1085, 18, 13, 20, 18, 32, 9, 24, 14, 186, 7, 520, 56, 30, 18, 32, 9765, 48, 27, 16, 364, 38, 5, 56, 5, 42, 8, 44, 252, 104, 18, 48, 868, 456, 279, 72, 98, 54, 390, 72, 140, 16, 45, 60, 72, 62, 8, 416, 1240155 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = denominator of Sum_{d|n} 1/A000203(d). Are there numbers n > 1 such that Sum_{d|n} 1/sigma(d) is an integer? a(n) = 2 for n = 14, 244, 494, 45994.  Are there any others? - Robert Israel, Apr 02 2017 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA a(1) = 1; a(p) = p + 1 for p = prime. a(n) = A265709(n) / (Sum_{d|n} 1/sigma(d)) = A265709(n) * A069934(n) / A265708(n). EXAMPLE For n = 6; divisors d of 6: {1, 2, 3, 6}; sigma(d): {1, 3, 4, 12}; Sum_{d|6} 1/sigma(d) = 1/1 + 1/3 + 1/4 + 1/12 = 20/12 = 5/3; a(n) = 3. MAPLE f:= n -> denom(add(1/numtheory:-sigma(d), d = numtheory:-divisors(n))): map(f, [\$1..200]); # Robert Israel, Apr 02 2017 MATHEMATICA Table[Denominator[Plus@@(1/DivisorSigma[1, Divisors[n]])], {n, 70}] (* Alonso del Arte, Dec 24 2015 *) CROSSREFS Cf. A069934, A000203, A265708, A265709, A265711, A265712, A265713, A265714, A266227, A266228. Sequence in context: A151357 A250105 A009169 * A322673 A306650 A324985 Adjacent sequences:  A265707 A265708 A265709 * A265711 A265712 A265713 KEYWORD nonn AUTHOR Jaroslav Krizek, Dec 24 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 18:24 EST 2020. Contains 332148 sequences. (Running on oeis4.)