This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265705 Triangle read by rows: T(n,k) = k IMPL n, 0 <= k <= n, bitwise logical IMPL. 13
 0, 1, 1, 3, 2, 3, 3, 3, 3, 3, 7, 6, 5, 4, 7, 7, 7, 5, 5, 7, 7, 7, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 15, 14, 13, 12, 11, 10, 9, 8, 15, 15, 15, 13, 13, 11, 11, 9, 9, 15, 15, 15, 14, 15, 14, 11, 10, 11, 10, 15, 14, 15, 15, 15, 15, 15, 11, 11, 11, 11, 15 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS T(n,0) = T(n,n) = A003817(n); T(2*n,n) = A265716(n); let m = A089633(n): T(m,k) = T(m,m-k), k = 0..m; let m = A158582(n): T(m,k) != T(m,m-k) for at least one k <= a(n); A265705(2*a(n),a(n)) = 2*a(n); let m = A247648(n): T(2*m,m) = 2*m; for n > 0: A029578(n+2) = number of odd terms in row n; no even terms in odd indexed rows. A265885(n) = A265705(A000040(n),n); A053644(n) = smallest k such that row k contains n. LINKS Reinhard Zumkeller, Rows n = 0..255 of triangle, flattened Eric Weisstein's World of Mathematics, Implies EXAMPLE .          10 | 1010                            12 | 1100 .           4 |  100                             6 |  110 .   ----------+-----                     ----------+----- .   4 IMPL 10 | 1011 -> T(12,6)=13       6 IMPL 12 | 1101 -> T(12,6)=13 . First 16 rows of the triangle, where non-symmetrical rows are marked, see comment concerning A158582 and A089633: .   0:                                 0 .   1:                               1   1 .   2:                             3   2   3 .   3:                           3   3   3   3 .   4:                         7   6   5   4   7    X .   5:                       7   7   5   5   7   7 .   6:                     7   6   7   6   7   6   7 .   7:                   7   7   7   7   7   7   7   7 .   8:                15  14  13  12  11  10   9   8  15    X .   9:              15  15  13  13  11  11   9   9  15  15    X .  10:            15  14  15  14  11  10  11  10  15  14  15    X .  11:          15  15  15  15  11  11  11  11  15  15  15  15 .  12:        15  14  13  12  15  14  13  12  15  14  13  12  15    X .  13:      15  15  13  13  15  15  13  13  15  15  13  13  15  15 .  14:    15  14  15  14  15  14  15  14  15  14  15  14  15  14  15 .  15:  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15 . PROG (Haskell) a265705_tabl = map a265705_row [0..] a265705_row n = map (a265705 n) [0..n] a265705 n k = k `bimpl` n where    bimpl 0 0 = 0    bimpl p q = 2 * bimpl p' q' + if u <= v then 1 else 0                where (p', u) = divMod p 2; (q', v) = divMod q 2 CROSSREFS Cf. A003817, A007088, A029578, A051933 (XOR), A080098 (OR), A080099 (AND), A089633, A158582, A247648, A265716 (central terms), A265736 (row sums). Cf. A053644, A265885. Sequence in context: A079790 A098726 A065801 * A205237 A086920 A182021 Adjacent sequences:  A265702 A265703 A265704 * A265706 A265707 A265708 KEYWORD nonn,tabl,look AUTHOR Reinhard Zumkeller, Dec 15 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 04:18 EST 2019. Contains 320371 sequences. (Running on oeis4.)