This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265603 Triangle read by rows, the denominators of the Bell transform of B(2n,1) where B(n,x) are the Bernoulli polynomials. 3
 1, 1, 1, 1, 6, 1, 1, 30, 2, 1, 1, 42, 20, 1, 1, 1, 30, 63, 12, 3, 1, 1, 66, 1260, 504, 12, 2, 1, 1, 2730, 495, 360, 72, 4, 2, 1, 1, 6, 900900, 5940, 432, 2, 30, 3, 1, 1, 510, 15015, 1351350, 990, 80, 6, 10, 1, 1, 1, 798, 5105100, 360360, 154440, 1056, 80, 12, 2, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS For the definition of the Bell transform see A264428 and the link given there. LINKS EXAMPLE 1, 1,    1, 1,    6,      1, 1,   30,      2,       1, 1,   42,     20,       1,   1, 1,   30,     63,      12,   3,  1, 1,   66,   1260,     504,  12,  2,  1, 1, 2730,    495,     360,  72,  4,  2,  1, 1,    6, 900900,    5940, 432,  2, 30,  3, 1, 1,  510,  15015, 1351350, 990, 80,  6, 10, 1, 1. MAPLE A265603_triangle := proc(n) local B, C, k; B := BellMatrix(x -> bernoulli(2*x, 1), n); # see A264428 for k from 1 to n do    C := LinearAlgebra:-Row(B, k):    print(seq(denom(C[j]), j=1..k)) od end: A265603_triangle(10); MATHEMATICA BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; B = BellMatrix[BernoulliB[2#, 1]&, rows]; Table[B[[n, k]] // Denominator, {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 27 2018, from Maple *) CROSSREFS Cf. A265602 for the numerators, A265314 and A265315 for B(n,1). Cf. A002445 (column 1). Sequence in context: A105373 A296548 A201461 * A174186 A111578 A166349 Adjacent sequences:  A265600 A265601 A265602 * A265604 A265605 A265606 KEYWORD nonn,tabl,frac AUTHOR Peter Luschny, Jan 21 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 20:42 EDT 2019. Contains 328197 sequences. (Running on oeis4.)