This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265559 Smallest base-2 palindrome m >= n, written in base 2. 1
 0, 1, 11, 11, 101, 101, 111, 111, 1001, 1001, 1111, 1111, 1111, 1111, 1111, 1111, 10001, 10001, 10101, 10101, 10101, 10101, 11011, 11011, 11011, 11011, 11011, 11011, 11111, 11111, 11111, 11111, 100001, 100001, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 110011 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS MAPLE ispal:= proc(n) global b; # test if n is base-b pallindrome   local L, Ln, i;   L:= convert(n, base, b);   Ln:= nops(L); for i from 1 to floor(Ln/2) do if L[i] <> L[Ln+1-i] then return(false); fi; od: return(true); end proc; # find min pal >= n, write in base 10 big10:=proc(n) global b; local t1, t2, i, m, sw1, L1; t1:=convert(n, base, b); L1:=nops(t1); for m from n to 10*n do if ispal(m) then return(m); fi;                        od; lprint("no solution in big10 for n = ", n); end proc; # find min pal >= n, write in base 10 bigb:=proc(n) global b; local t1, t2, i, m, mb, sw1, L1; t1:=convert(n, base, b); L1:=nops(t1); for m from n to 10*n do if ispal(m) then t2:=convert(m, base, b); mb:=add(t2[i]*10^(i-1), i=1..nops(t2)); return(mb); fi;                        od; lprint("no solution in big10 for n = ", n); end proc; b:=2; [seq(big10(n), n=0..144)]; # A206914 [seq(bigb(n), n=0..144)]; # A265559 CROSSREFS Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509. See A206914 for the values of m written in base 10. Sequence in context: A088761 A215256 A265526 * A265543 A062128 A286618 Adjacent sequences:  A265556 A265557 A265558 * A265560 A265561 A265562 KEYWORD nonn,base AUTHOR N. J. A. Sloane, Dec 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 18:24 EDT 2019. Contains 327116 sequences. (Running on oeis4.)