login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = largest base-2 palindrome m <= 2n+1 such that every base-2 digit of m is <= the corresponding digit of 2n+1; m is written in base 2.
2

%I #11 Dec 11 2015 15:21:43

%S 1,11,101,111,1001,1001,1001,1111,10001,10001,10101,10101,10001,11011,

%T 10101,11111,100001,100001,100001,100001,100001,100001,101101,101101,

%U 100001,110011,100001,110011,100001,110011,101101,111111,1000001,1000001,1000001,1000001,1001001,1001001,1001001,1001001,1000001,1000001

%N a(n) = largest base-2 palindrome m <= 2n+1 such that every base-2 digit of m is <= the corresponding digit of 2n+1; m is written in base 2.

%C a(n) = A007088(A265509(n)). - _Reinhard Zumkeller_, Dec 11 2015

%H Reinhard Zumkeller, <a href="/A265510/b265510.txt">Table of n, a(n) for n = 0..8191</a>

%o (Haskell)

%o a265510 = a007088 . a265509 -- _Reinhard Zumkeller_, Dec 11 2015

%Y Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509.

%Y Cf. A007088.

%K nonn,base

%O 0,2

%A _N. J. A. Sloane_, Dec 09 2015