Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #24 Sep 08 2022 08:46:14
%S 1,139,433,1563,2095,2254,2871,3751,4003,4338,4843,6015,6331,6933,
%T 7324,7345,7485,7719,7836,8070,8413,9018,9840,9898,9915,9931,10611,
%U 11215,11356,11418,11560,11740,12010,12673,13039,13056,13225,14136,14271,14380,14974,15084
%N Numbers n such that n*2^1279 - 1 is prime.
%C The exponent of 2 in the expression, 1279, is a Mersenne exponent.
%H Andrew Howroyd, <a href="/A265502/b265502.txt">Table of n, a(n) for n = 1..1000</a>
%e n = 1 is a term since 2^1279 - 1 is prime (the 15th Mersenne prime).
%t Select[Range@ 11500, PrimeQ[# 2^1279 - 1] &] (* _Michael De Vlieger_, Dec 09 2015 *)
%o (MATLAB)
%o if isprime(n*2^1279-1)
%o disp(n)
%o end
%o (PARI) is(n)=ispseudoprime(n*2^1279 - 1) \\ _Anders Hellström_, Dec 09 2015
%o (Magma) [n: n in [1..10^4] |IsPrime(n*2^1279-1)]; // _Vincenzo Librandi_, Dec 10 2015
%Y Cf. A000043, A001348, A005122.
%K nonn
%O 1,2
%A _Vardan Semerjyan_, Dec 09 2015
%E Terms a(31) and beyond from _Andrew Howroyd_, Dec 23 2019