login
Numbers n resulting from alternately applying the operations +, -, *, / to the last term and second to last term.
0

%I #44 Sep 21 2023 19:25:29

%S 1,2,3,1,3,3,6,3,18,6,24,18,432,24,456,432,196992,456,197448,196992,

%T 38895676416,197448,38895873864,38895676416,1512881323731695591424,

%U 38895873864,1512881323770591465288,1512881323731695591424,2288809899755012359448064967916189926490112

%N Numbers n resulting from alternately applying the operations +, -, *, / to the last term and second to last term.

%F a(n) = n+1 for n in {0, 1}, otherwise

%F a(n+1) = a(n) + a(n-1) if n mod 4 = 1,

%F a(n+1) = a(n) - a(n-1) if n mod 4 = 2,

%F a(n+1) = a(n) * a(n-1) if n mod 4 = 3,

%F a(n+1) = a(n) / a(n-1) if n mod 4 = 0.

%F From _Robert Israel_, Dec 22 2015: (Start)

%F a(4n+8) = a(4n+4)^2*(1+1/a(4n)).

%F a(4n+9) = a(4n+5)*(a(4n+5)+a(4n+1)+1).

%F a(4n+10) = a(4n+6)*(a(4n+6)-a(4n+2)+1).

%F a(4n+11) = a(4n+7)^2*(1+1/a(4n+3)). (End)

%e a(0) = 1.

%e a(1) = 2.

%e a(2) = a(1) + a(0) = 2 + 1 = 3.

%e a(3) = a(2) - a(1) = 3 - 2 = 1.

%e a(4) = a(3) * a(2) = 1 * 3 = 3.

%e a(5) = a(4) / a(3) = 3 / 1 = 3.

%e a(6) = a(5) + a(4) = 3 + 3 = 6.

%e a(7) = a(6) - a(5) = 6 - 3 = 3.

%e a(8) = a(7) * a(6) = 3 * 6 = 18.

%e a(9) = a(8) / a(7) = 18 / 3 = 6.

%p f:= proc(n) option remember;

%p if n mod 4 = 2 then procname(n-1)+procname(n-2)

%p elif n mod 4 = 3 then procname(n-1)-procname(n-2)

%p elif n mod 4 = 0 then procname(n-1)*procname(n-2)

%p else procname(n-3)

%p fi

%p end proc:

%p f(0):= 1: f(1):= 2:

%p seq(f(i),i=0..20); # _Robert Israel_, Dec 22 2015

%t a[0] = 1; a[1] = 2; a[x_] := a[x] = Which[Mod[x, 4] == 2, a[x - 1] + a[x - 2], Mod[x, 4] == 3, a[x - 1] - a[x - 2], Mod[x, 4] == 0, a[x - 1] a[x - 2], Mod[x, 4] == 1, a[x - 1]/a[x - 2]]; Table[a@ n, {n, 0, 30}] (* _Michael De Vlieger_, Dec 22 2015 *)

%o (BASIC)

%o input a(0)

%o input a(1)

%o for n=1 to 1000

%o begin

%o if n mod 4 =1 then a(n+1):=a(n)+a(n-1)

%o if n mod 4 =2 then a(n+1):=a(n)-a(n-1)

%o if n mod 4 =3 then a(n+1):=a(n)*a(n-1)

%o if n mod 4 =0 then a(n+1):=a(n)/a(n-1)

%o print a(n+1)

%o end

%o (PARI) lista(nn) = {print1(x = 1, ", "); print1(y = 2, ", "); for (n=1, nn, if (n % 4 == 1, z = x+y); if (n % 4 == 2, z = y-x); if (n % 4 == 3, z = x*y); if (n % 4 == 0, z = y/x); print1(z, ", "); x = y; y = z;);} \\ _Michel Marcus_, Dec 22 2015

%Y Cf. A131183.

%K nonn,easy

%O 0,2

%A _Florent Martigne_, Dec 09 2015