login
A265353
Permutation of nonnegative integers: a(n) = A264985(A263273(n)).
10
0, 1, 3, 2, 4, 10, 6, 9, 12, 5, 7, 19, 8, 13, 31, 24, 28, 37, 15, 11, 33, 18, 27, 30, 21, 36, 39, 14, 16, 46, 23, 25, 73, 69, 55, 64, 17, 22, 58, 26, 40, 94, 78, 85, 112, 51, 34, 100, 72, 82, 91, 75, 109, 118, 42, 32, 96, 20, 35, 105, 60, 99, 102, 45, 29, 87, 54, 81, 84, 57, 90, 93, 48, 38, 114, 63, 108, 111, 66, 117, 120, 41
OFFSET
0,3
COMMENTS
Composition of A263273 with the permutation obtained from its odd bisection.
FORMULA
a(n) = A264985(A263273(n)).
PROG
(Scheme) (define (A265353 n) (A264985 (A263273 n)))
(Python)
from sympy import factorint
from sympy.ntheory.factor_ import digits
from operator import mul
def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
def a038502(n):
f=factorint(n)
return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
def a038500(n): return n/a038502(n)
def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
def a264985(n): return (a263273(2*n + 1) - 1)/2
def a(n): return a264985(a263273(n)) # Indranil Ghosh, May 22 2017
CROSSREFS
Inverse: A265354.
Sequence in context: A033820 A095259 A260596 * A266189 A371635 A368226
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Dec 07 2015
STATUS
approved