This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265352 Permutation of nonnegative integers: a(n) = A263273(A263272(n)). 13
 0, 1, 2, 3, 4, 7, 6, 19, 8, 9, 10, 5, 12, 13, 22, 21, 64, 23, 18, 55, 20, 57, 58, 25, 24, 73, 26, 27, 28, 11, 30, 31, 16, 15, 46, 17, 36, 37, 14, 39, 40, 67, 66, 199, 68, 63, 190, 65, 192, 193, 70, 69, 208, 71, 54, 163, 56, 165, 166, 61, 60, 181, 62, 171, 172, 59, 174, 175, 76, 75, 226, 77, 72, 217, 74, 219, 220, 79, 78, 235, 80, 81 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Composition of A263273 with the permutation obtained from its even bisection. LINKS Antti Karttunen, Table of n, a(n) for n = 0..9841 FORMULA a(n) = A263273(A263272(n)). As a composition of other related permutations: a(n) = A265368(A264974(n)). Other identities. For all n >= 0: a(3*n) = 3*a(n). PROG (Scheme) (define (A265352 n) (A263273 (A263272 n))) (Python) from sympy import factorint from sympy.ntheory.factor_ import digits from operator import mul def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3) def a038502(n):     f=factorint(n)     return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f]) def a038500(n): return n/a038502(n) def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n) def a(n): return a263273(a263273(2*n)/2) # Indranil Ghosh, Jun 08 2017 CROSSREFS Inverse: A265351. Cf. A263272, A263273, A264974, A265368. Cf. also A265354, A265355, A265356 Sequence in context: A006875 A064554 A290641 * A265368 A239972 A162425 Adjacent sequences:  A265349 A265350 A265351 * A265353 A265354 A265355 KEYWORD nonn,base AUTHOR Antti Karttunen, Dec 07 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 22:13 EDT 2019. Contains 328373 sequences. (Running on oeis4.)