%I
%S 1,0,2,5,3,0,6,4,0,0,7,0,0,0,0,0,8,10,0,0,20,0,0,9,11,0,19,21,0,0,0,0,
%T 12,18,0,22,0,0,0,0,13,0,17,23,0,0,0,0,0,0,14,16,0,24,26,0,0,0,0,0,0,
%U 15,0,0,25,27,0,0,0,0,0,0,0,0,0,0,0,28,83
%N Fibonacci word fractal in an n X n grid, starting downwards from the topleft corner, listed antidiagonally.
%C The nth iteration of this curve ends at the nth Fibonacci number.
%C As this is not a spacefilling curve, not all points on the grid are reached by the curve; these points are given the value 0.
%H Max Barrentine, <a href="/A265318/b265318.txt">Table of n, a(n) for n = 1..2484</a>
%H Alexis MonnerotDumaine, <a href="https://hal.archivesouvertes.fr/hal00367972">The Fibonacci Word fractal</a>, HAL Id: hal00367972, 2009.
%e The top left corner of the array shows how this curve begins (connect the terms in numerical order):
%e 1 0 5 6 7
%e 2 3 4 0 8
%e 0 0 0 10 9
%e 0 0 0 11 0
%e 0 0 0 12 13
%e 20 19 18 0 14
%e 21 0 17 16 15
%e 22 23 0 0 0
%e 0 24 0 0 0
%e 26 25 0 0 0
%e 27 0 31 32 33
%e 28 29 30 0 34
%Y See also A163357, A163334, and A054238 for other fractal curves.
%K nonn,tabl
%O 1,3
%A _Max Barrentine_, Dec 06 2015
