This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265270 E.g.f.: Sum_{n>=0} (n*y + x^n)^n / n!  -  Sum_{n>=0} n^n*y^n / n!  at y=1. 7
 1, 4, 27, 268, 3125, 47736, 823543, 16938496, 387480969, 10037800000, 285311670611, 8929352825856, 302875106592253, 11118111848642176, 437896614702459375, 18450553823153852416, 827240261886336764177, 39349484421578544973824, 1978419655660313589123979, 104860617498432185036800000, 5842587870256483592730884421, 341431529170492630491871811584, 20880467999847912034355032910567 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA E.g.f.: Sum_{n>=1} (-LambertW(-y*x^n)/y)^n / (1 + LambertW(-y*x^n)) / n!  at y=1. E.g.f.: Sum_{n>=1} x^(n^2) / n! * Sum_{k>=0} (n+k)^k * y^k * x^(n*k) / k!  at y=1. ... a(n) = Sum_{d|n} (y*d)^(d-n/d) * binomial(d, n/d) * n!/d! for n>=1  at y=1. EXAMPLE E.g.f.: A(x) = x + 4*x^2/2! + 27*x^3/3! + 268*x^4/4! + 3125*x^5/5! + 47736*x^6/6! + 823543*x^7/7! + 16938496*x^8/8! + 387480969*x^9/9! + 10037800000*x^10/10! +... such that A(x) = [(y + x) + (2*y + x^2)^2/2! + (3*y + x^3)^3/3! + (4*y + x^4)^4/4! + (5*y + x^5)^5/5! + (6*y + x^6)^6/6! + (7*y + x^7)^7/7! +...] - [y + 2^2*y^2/2! + 3^3*y^3/3! + 4^4*y^4/4! + 5^5*y^5/5! + 6^6*y^6/6! +...] evaluated at y=1. Also, we have the identity related to the LambertW function: A(x) = x*[Sum_{k>=0} (k+1)^k * y^k * x^k/k!] + x^4/2!*[Sum_{k>=0} (k+2)^k * y^k * x^(2*k)/k!] + x^9/3!*[Sum_{k>=0} (k+3)^k * y^k * x^(3*k)/k!] + x^16/4!*[Sum_{k>=0} (k+4)^k * y^k * x^(4*k)/k!] + x^25/5!*[Sum_{k>=0} (k+5)^k * y^k * x^(5*k)/k!] +... evaluated at y=1. PROG (PARI) a(n, y=1) = my(A=1); A = sum(m=1, n, x^(m^2) * sum(k=0, n, (k+m)^k*y^k*x^(m*k)/k! +x*O(x^n)) / m!); n!*polcoeff(A, n) for(n=1, 30, print1(a(n), ", ")) (PARI) a(n, y=1) = my(A=1); A = sum(m=0, n, ((m*y + x^m +x*O(x^n))^m - m^m*y^m)/m!); if(n==0, 0, n!*polcoeff(A, n)) for(n=1, 30, print1(a(n), ", ")) (PARI) a(n, y=1) = if(n<1, 0, sumdiv(n, d, (d*y)^(d-n/d) * binomial(d, n/d) * n!/d! ) ) for(n=1, 30, print1(a(n), ", ")) (PARI) /* Compare these series (informal): */ LW=serreverse(x*exp(x +O(x^26))); sum(n=1, 26, ((n*y + x^n)^n - n^n*y^n)/ n! +O(x^26)) sum(n=1, 26, (-subst(LW, x, -x^n*y)/y)^n/n! /(1 + subst(LW, x, -x^n*y) ) +O(x^26)) CROSSREFS Cf. A265277 (y=2), A265268 (y=-1), A259209, A259223, A265943, A265269. Sequence in context: A052813 A218653 A121353 * A161633 A052871 A104653 Adjacent sequences:  A265267 A265268 A265269 * A265271 A265272 A265273 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 04:23 EST 2019. Contains 329991 sequences. (Running on oeis4.)