This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265269 E.g.f.: Sum_{n>=0} (x^n + y^n)^n / n!  -  Sum_{n>=0} y^(n^2) / n!  at y=2. 1
 1, 8, 192, 16396, 5242880, 6442453824, 30786325577728, 576460752306003968, 42501298345826806983744, 12379400392853802758900285440, 14278816360970775978458864905355264, 65334214448820184984967924794323967844352, 1187470080331358621040493926581979953470445191168, 85819750288489776068067433520417314295130321163120541696, 24682568359818090632324537738360257574741037984503809538441871360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA a(n) = Sum_{d|n} 2^(d^2-n) * binomial(d, n/d) * n!/d!  for n>=1. EXAMPLE E.g.f.: A(x) = x + 8*x^2/2! + 192*x^3/3! + 16396*x^4/4! + 5242880*x^5/5! + 6442453824*x^6/6! + 30786325577728*x^7/7! + 576460752306003968*x^8/8! +... such that A(x) = [(x + y) + (x^2 + y^2)^2/2! + (x^3 + y^3)^3/3! + (x^4 + y^4)^4/4! + (x^5 + y^5)^5/5! + (x^6 + y^6)^6/6! + (x^7 + y^7)^7/7! +...] - [y + y^4/2! + y^9/3! + y^16/4! + y^25/5! + y^36/6! + y^49/7! +...] evaluated at y=2. Equivalently, A(x) = x + 2*y^2*x^2/2! + 3*y^6*x^3/3! + (4*y^12 + 12)*x^4/4! + 5*y^20*x^5/5! + (6*y^30 + 360*y^3)*x^6/6! + 7*y^42*x^7/7! + (8*y^56 + 10080*y^8)*x^8/8! + (9*y^72 + 60480)*x^9/9! + (10*y^90 + 302400*y^15)*x^10/10! + 11*y^110*x^11/11! + (12*y^132 + 9979200*y^24 + 79833600*y^4)*x^12/12! + 13*y^156*x^13/13! + (14*y^182 + 363242880*y^35)*x^14/14! + (15*y^210 + 108972864000*y^10)*x^15/15! + (16*y^240 + 14529715200*y^48 + 871782912000)*x^16/16! +... evaluated at y=2. PROG (PARI) {a(n, y=2) = my(A=1); A = sum(m=0, n, ((x^m + y^m +x*O(x^n))^m - y^(m^2))/m!); if(n==0, 0, n!*polcoeff(A, n))} for(n=1, 20, print1(a(n), ", ")) (PARI) {a(n, y=2) = if(n<1, 0, sumdiv(n, d, y^(d^2-n) * binomial(d, n/d) * n!/d! ) )} for(n=1, 20, print1(a(n), ", ")) CROSSREFS Cf. A259209, A265270. Sequence in context: A003435 A071303 A128406 * A003956 A204820 A041269 Adjacent sequences:  A265266 A265267 A265268 * A265270 A265271 A265272 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 12:04 EST 2019. Contains 329979 sequences. (Running on oeis4.)