login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265269 E.g.f.: Sum_{n>=0} (x^n + y^n)^n / n!  -  Sum_{n>=0} y^(n^2) / n!  at y=2. 1
1, 8, 192, 16396, 5242880, 6442453824, 30786325577728, 576460752306003968, 42501298345826806983744, 12379400392853802758900285440, 14278816360970775978458864905355264, 65334214448820184984967924794323967844352, 1187470080331358621040493926581979953470445191168, 85819750288489776068067433520417314295130321163120541696, 24682568359818090632324537738360257574741037984503809538441871360 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..15.

FORMULA

a(n) = Sum_{d|n} 2^(d^2-n) * binomial(d, n/d) * n!/d!  for n>=1.

EXAMPLE

E.g.f.: A(x) = x + 8*x^2/2! + 192*x^3/3! + 16396*x^4/4! + 5242880*x^5/5! + 6442453824*x^6/6! + 30786325577728*x^7/7! + 576460752306003968*x^8/8! +...

such that

A(x) = [(x + y) + (x^2 + y^2)^2/2! + (x^3 + y^3)^3/3! + (x^4 + y^4)^4/4! + (x^5 + y^5)^5/5! + (x^6 + y^6)^6/6! + (x^7 + y^7)^7/7! +...]

- [y + y^4/2! + y^9/3! + y^16/4! + y^25/5! + y^36/6! + y^49/7! +...]

evaluated at y=2.

Equivalently,

A(x) = x + 2*y^2*x^2/2! + 3*y^6*x^3/3! +

(4*y^12 + 12)*x^4/4! +

5*y^20*x^5/5! +

(6*y^30 + 360*y^3)*x^6/6! +

7*y^42*x^7/7! +

(8*y^56 + 10080*y^8)*x^8/8! +

(9*y^72 + 60480)*x^9/9! +

(10*y^90 + 302400*y^15)*x^10/10! +

11*y^110*x^11/11! +

(12*y^132 + 9979200*y^24 + 79833600*y^4)*x^12/12! +

13*y^156*x^13/13! +

(14*y^182 + 363242880*y^35)*x^14/14! +

(15*y^210 + 108972864000*y^10)*x^15/15! +

(16*y^240 + 14529715200*y^48 + 871782912000)*x^16/16! +...

evaluated at y=2.

PROG

(PARI) {a(n, y=2) = my(A=1); A = sum(m=0, n, ((x^m + y^m +x*O(x^n))^m - y^(m^2))/m!); if(n==0, 0, n!*polcoeff(A, n))}

for(n=1, 20, print1(a(n), ", "))

(PARI) {a(n, y=2) = if(n<1, 0, sumdiv(n, d, y^(d^2-n) * binomial(d, n/d) * n!/d! ) )}

for(n=1, 20, print1(a(n), ", "))

CROSSREFS

Cf. A259209, A265270.

Sequence in context: A003435 A071303 A128406 * A003956 A204820 A041269

Adjacent sequences:  A265266 A265267 A265268 * A265270 A265271 A265272

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 26 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 12:04 EST 2019. Contains 329979 sequences. (Running on oeis4.)