This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265268 E.g.f.: Sum_{n>=1} LambertW(x^n)^n / (1 + LambertW(x^n)) / n!. 2
 1, -4, 27, -244, 3125, -47736, 823543, -16615936, 387480969, -10037800000, 285311670611, -8903486739456, 302875106592253, -11118111848642176, 437896614702459375, -18442934324265250816, 827240261886336764177, -39349484421578544973824, 1978419655660313589123979, -104854583515276985036800000, 5842587870256483592730884421, -341431529170492630491871811584, 20880467999847912034355032910567 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA E.g.f.: Sum_{n>=0} ((x^n - n)^n - (-n)^n) / n!. E.g.f.: Sum_{n>=1} x^(n^2) / n! * Sum_{k>=0} (-1)^k * (n+k)^k * x^(n*k) / k!. ... a(n) = Sum_{d|n} (-d)^(d-n/d) * binomial(d, n/d) * n!/d! for n>=1. EXAMPLE E.g.f.: A(x) = x - 4*x^2/2! + 27*x^3/3! - 244*x^4/4! + 3125*x^5/5! - 47736*x^6/6! + 823543*x^7/7! - 16615936*x^8/8! + 387480969*x^9/9! - 10037800000*x^10/10! +... such that A(x) = x + ((x^2 - 2)^2 - 2^2)/2! + ((x^3 - 3)^3 + 3^3)/3! + ((x^4 - 4)^4 - 4^4)/4! + ((x^5 - 5)^5 + 5^5)/5! + ((x^6 - 6)^6 - 6^6)/6! + ((x^7 - 7)^7 + 7^7)/7! + ((x^8 - 8)^8 - 8^8)/8! + ((x^9 - 9)^9 + 9^9)/9! +... Also, we have the identity related to the LambertW function: A(x) = x*[Sum_{k>=0} (-1)^k * (k+1)^k * x^k/k!] + x^4/2!*[Sum_{k>=0} (-1)^k * (k+2)^k * x^(2*k)/k!] + x^9/3!*[Sum_{k>=0} (-1)^k * (k+3)^k * x^(3*k)/k!] + x^16/4!*[Sum_{k>=0} (-1)^k * (k+4)^k * x^(4*k)/k!] + x^25/5!*[Sum_{k>=0} (-1)^k * (k+5)^k * x^(5*k)/k!] +... PROG (PARI) a(n) = my(A=1); A = sum(m=1, n, x^(m^2) * sum(k=0, n, (-1)^k*(k+m)^k*x^(m*k)/k! +x*O(x^n)) / m!); n!*polcoeff(A, n) for(n=1, 30, print1(a(n), ", ")) (PARI) a(n) = my(A=1); A = sum(m=0, n, ((x^m - m +x*O(x^n))^m - (-m)^m)/m!); if(n==0, 0, n!*polcoeff(A, n)) for(n=1, 30, print1(a(n), ", ")) (PARI) a(n) = if(n<1, 0, sumdiv(n, d, (-d)^(d-n/d) * binomial(d, n/d) * n!/d! ) ) for(n=1, 30, print1(a(n), ", ")) (PARI) /* Compare these series (informal): */ LW=serreverse(x*exp(x +O(x^26))); sum(n=1, 26, subst(LW, x, x^n)^n/n! /(1 + subst(LW, x, x^n) ) +O(x^26)) sum(n=1, 26, ((x^n - n)^n - (-n)^n)/ n! +O(x^26)) CROSSREFS Cf. A265270, A265277. Sequence in context: A161120 A183430 A212559 * A121063 A229619 A051863 Adjacent sequences:  A265265 A265266 A265267 * A265269 A265270 A265271 KEYWORD sign AUTHOR Paul D. Hanna, Dec 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 13:50 EST 2019. Contains 329877 sequences. (Running on oeis4.)