This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265144 Number of lambda-parking functions of the unique partition lambda with encoding n = Product_{i:lambda} prime(i). 2
 1, 1, 2, 1, 3, 3, 4, 1, 4, 5, 5, 4, 6, 7, 8, 1, 7, 7, 8, 7, 12, 9, 9, 5, 9, 11, 8, 10, 10, 16, 11, 1, 16, 13, 15, 11, 12, 15, 20, 9, 13, 25, 14, 13, 20, 17, 15, 6, 16, 19, 24, 16, 16, 15, 21, 13, 28, 19, 17, 27, 18, 21, 32, 1, 27, 34, 19, 19, 32, 34, 20, 16 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..20000 R. Stanley, Parking Functions, 2011 EXAMPLE n = 18 = 2*3*3 = prime(1)*prime(2)*prime(2) encodes partition [1,2,2] having seven lambda-parking functions: [1,1,1], [1,1,2], [1,2,1], [2,1,1], [1,2,2], [2,1,2], [2,2,1], thus a(18) = 7. MAPLE with(numtheory): p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)          -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)): a:= n-> p(sort([seq(pi(i[1])\$i[2], i=ifactors(n)[2])])): seq(a(n), n=1..100); CROSSREFS Cf. A000040, A000041, A215366, A265145. Sequence in context: A066328 A319225 A304037 * A263275 A308057 A097686 Adjacent sequences:  A265141 A265142 A265143 * A265145 A265146 A265147 KEYWORD nonn,look AUTHOR Alois P. Heinz, Dec 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 12:28 EDT 2019. Contains 327098 sequences. (Running on oeis4.)