login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265120 Irregular array read by rows: Row n gives the number of elements in the multiplicative group mod n, (Z/nZ, *), that have order d for each divisor d of the exponent of the group. 0
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 1, 1, 2, 2, 1, 3, 4, 1, 3, 4, 1, 1, 2, 4, 8, 1, 1, 2, 2, 1, 1, 2, 2, 6, 6, 1, 3, 4, 1, 3, 2, 6, 1, 1, 4, 4, 1, 1, 10, 10, 1, 7, 1, 1, 2, 4, 4, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,8

COMMENTS

The exponent of the multiplicative group mod n is Carmichael lambda(n) given in A002322.

The row lengths are tau(lambda(n)) = A000005(A002322(n)) = A066800(n).

The invariant factor decomposition of (Z/nZ,*) is given in A258446.

The row sums are phi(n) = A000010(n).

It appears that column 2 is A155828.

LINKS

Table of n, a(n) for n=2..84.

EXAMPLE

{1}

{1, 1}

{1, 1}

{1, 1, 2}

{1, 1}

{1, 1, 2, 2}

{1, 3}

{1, 1, 2, 2}

{1, 1, 2}

{1, 1, 4, 4}

{1, 3}

{1, 1, 2, 2, 2, 4}

{1, 1, 2, 2}

{1, 3, 4}

{1, 3, 4}

{1, 1, 2, 4, 8}

{1, 1, 2, 2}

{1, 1, 2, 2, 6, 6}

{1, 3, 4}

{1, 3, 2, 6}

{1, 1, 4, 4}

{1, 1, 10, 10}

{1, 7},

{1, 1, 2, 4, 4, 8}

The row for n=21 reads: 1,3,2,6 because the multiplicative group mod 21,  (Z/21*Z,*) is isomorphic to C_6 X C_2. The exponent of this group is 6. This group contains one element of order 1, three elements of order 2, two elements of order 3, and six elements of order 6.

MATHEMATICA

f[{p_, e_}] := {FactorInteger[p - 1][[All, 1]]^

    FactorInteger[p - 1][[All, 2]],

   FactorInteger[p^(e - 1)][[All, 1]]^

    FactorInteger[p^(e - 1)][[All, 2]]};

fun[lst_] :=

Module[{int, num, res},

  int = Sort /@ GatherBy[Join @@ (FactorInteger /@ lst), First];

  num = Times @@ Power @@@ (Last@# & /@ int);

  res = Flatten[Map[Power @@ # &, Most /@ int, {2}]];

  {num, res}]

rec[lt_] :=

First@NestWhile[{Append[#[[1]], fun[#[[2]]][[1]]],

     fun[#[[2]]][[2]]} &, {{}, lt}, Length[#[[2]]] > 0 &];

t[list_] :=

Table[Count[Map[PermutationOrder, GroupElements[AbelianGroup[list]]],

    d], {d, Divisors[First[list]]}];

Map[t, Table[

   If[! IntegerQ[n/8],

    DeleteCases[rec[Flatten[Map[f, FactorInteger[n]]]], 1],

    DeleteCases[

     rec[Join[{2, 2^(FactorInteger[n][[1, 2]] - 2)},

       Flatten[Map[f, Drop[FactorInteger[n], 1]]]]], 1]], {n, 2,

    25}] /. {} -> {1}]

CROSSREFS

Cf. A000005, A000010, A002322, A066800, A155828, A258446.

Sequence in context: A296773 A108244 A277824 * A124961 A008967 A211355

Adjacent sequences:  A265117 A265118 A265119 * A265121 A265122 A265123

KEYWORD

nonn,tabf

AUTHOR

Geoffrey Critzer, Dec 01 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 05:56 EDT 2019. Contains 325168 sequences. (Running on oeis4.)