This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265099 Least k such that floor(2^A006666(k)/3^A006667(k)) - k = n. 1
 1, 6, 9, 19, 18, 27, 33, 37, 36, 50, 43, 56, 59, 66, 57, 74, 78, 72, 97, 87, 86, 98, 112, 119, 118, 134, 123, 115, 114, 130, 149, 148, 157, 135, 179, 144, 153, 187, 220, 174, 173, 172, 197, 196, 255, 224, 238, 219, 236, 203, 249, 268, 247, 246, 230, 229, 228 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A006666 and A006667 are the number of halving and tripling steps to reach 1 in 3x+1 problem. Conjecture: k exists for all n. In other words, given an integer n, there exists always at least an integer k and a pair of integers (a, b) such that n + k = 2^a/3^b where a is the number of halving steps to reach 1, and b is the number of tripling steps to reach 1 in 3x+1 problem. LINKS EXAMPLE a(0) = 1 because A006666(1) = 0 and A006667(1) = 0 => floor(2^0/3^0) - 1 = 1 - 1 = 0; a(1) = 6 because A006666(6) = 6 and A006667(6) = 2 => floor(2^6/3^2) - 6 = floor(64/9) - 6 = 7 - 6 = 1. MATHEMATICA lst={}; Do[Collatz[k_]:=NestWhileList[If[EvenQ[#], #/2, 3 #+1]&, k, #>1&]; nn=500; t={}; k=0; While[Length[t]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 12 19:19 EST 2018. Contains 317116 sequences. (Running on oeis4.)