OFFSET
0,2
COMMENTS
In general, for m >= 1, Sum_{k=0..n} q(k)^m ~ 2*sqrt(3*n)/(m*Pi) * q(n)^m ~ exp(Pi*m*sqrt(n/3)) / (Pi*m * 2^(2*m-1) * 3^(m/4-1/2) * n^(3*m/4-1/2)), where q(k) is A000009(k).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = Sum_{k=0..n} A000009(k)^2.
a(n) ~ exp(2*Pi*sqrt(n/3))/(16*Pi*n).
MATHEMATICA
Table[Sum[PartitionsQ[k]^2, {k, 0, n}], {n, 0, 50}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 01 2015
STATUS
approved