%I #18 Feb 20 2024 16:08:48
%S 1,3,5,8,12,16,21,28,36,46,60,77,98,126,162,207,265,340,435,557,714,
%T 914,1170,1499,1920,2458,3148,4032,5163,6612,8468,10844,13887,17785,
%U 22776,29167,37353,47836,61260,78452,100469,128664,164772,211014,270232,346069,443190,567566,726846,930827,1192053,1526588
%N Coordination sequence for (2,4,5) tiling of hyperbolic plane.
%H G. C. Greubel, <a href="/A265060/b265060.txt">Table of n, a(n) for n = 0..1000</a>
%H J. W. Cannon, P. Wagreich, <a href="http://dx.doi.org/10.1007/BF01444714">Growth functions of surface groups</a>, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 1, 1, 1, 0, 0, -1).
%F G.f.: (x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)/(x^8-x^5-x^4-x^3+1).
%t CoefficientList[Series[(x + 1)^2 (x^2 + 1) (x^4 + x^3 + x^2 + x + 1)/(x^8 - x^5 - x^4 - x^3 + 1), {x, 0, 60}], x] (* _Vincenzo Librandi_, Dec 30 2015 *)
%o (PARI) x='x+O('x^50); Vec((x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)/(x^8-x^5-x^4-x^3+1)) \\ _G. C. Greubel_, Aug 06 2017
%Y Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Dec 29 2015