This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265016 Total sum of number of lambda-parking functions, where lambda ranges over all partitions of n into distinct parts. 7
 1, 1, 2, 6, 9, 20, 43, 74, 130, 241, 493, 774, 1413, 2286, 3987, 7287, 11650, 19235, 31581, 50852, 80867, 141615, 214538, 349179, 541603, 859759, 1303221, 2054700, 3277493, 4960397, 7652897, 11662457, 17703655, 26603187, 40043433, 59384901, 92234897, 134538472 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..100 R. Stanley, Parking Functions, 2011 EXAMPLE The number of lambda-parking functions induced by the partitions of 4 into distinct parts: 5 by [1,3]: [1,1], [1,2], [2,1], [1,3], [3,1], 4 by [4]: [1], [2], [3], [4]. a(4) = 5 + 4 = 9. MAPLE p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)          -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)): g:= (n, i, l)->  `if`(i*(i+1)/2n, 0, g(n-i, i-1, [i, l[]])))): a:= n-> g(n\$2, []): seq(a(n), n=0..35); CROSSREFS Row sums of A265017, A265018, A265019, A265020. Cf. A000009, A265007, A265202. Sequence in context: A129233 A106529 A088902 * A279897 A095967 A047161 Adjacent sequences:  A265013 A265014 A265015 * A265017 A265018 A265019 KEYWORD nonn AUTHOR Alois P. Heinz, Nov 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.