0,3

Note that n=13 is the first point where this involution does not preserve the parity as a(13) = 26.

Antti Karttunen, Table of n, a(n) for n = 0..7381

Index entries for sequences that are permutations of the natural numbers

a(n) = A263273(8*n)/8.

a(n) = A263272(4*n)/4.

a(n) = A264974(2*n)/2.

Other identities. For all n >= 0:

a(3*n) = 3*a(n).

(Scheme, three different variants)

(define (A264978 n) (/ (A263273 (* 8 n)) 8))

(define (A264978 n) (/ (A263272 (* 4 n)) 4))

(define (A264978 n) (/ (A264974 (* 2 n)) 2))

Cf. A263273, A263272, A264974.

Sequence in context: A100208 A277972 A222243 * A268675 A268385 A093928

Adjacent sequences: A264975 A264976 A264977 * A264979 A264980 A264981

nonn

Antti Karttunen, Dec 06 2015

approved