The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264977 a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1). 23
 0, 1, 2, 3, 4, 1, 6, 7, 8, 5, 2, 7, 12, 1, 14, 15, 16, 13, 10, 7, 4, 5, 14, 11, 24, 13, 2, 15, 28, 1, 30, 31, 32, 29, 26, 7, 20, 13, 14, 3, 8, 1, 10, 11, 28, 5, 22, 19, 48, 21, 26, 15, 4, 13, 30, 19, 56, 29, 2, 31, 60, 1, 62, 63, 64, 61, 58, 7, 52, 29, 14, 19, 40, 25, 26, 3, 28, 13, 6, 11, 16, 9, 2, 11, 20, 1, 22 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is the n-th Stern polynomial (cf. A260443, A125184) evaluated at X = 2 over the field GF(2). For n >= 1, a(n) gives the index of the row where n occurs in array A277710. LINKS Antti Karttunen, Table of n, a(n) for n = 0..16384 FORMULA a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1). a(n) = A248663(A260443(n)). a(n) = A048675(A277330(n)). - Antti Karttunen, Oct 27 2016 Other identities. For all n >= 0: a(n) = n - A265397(n). From Antti Karttunen, Oct 28 2016: (Start) A000035(a(n)) = A000035(n). [Preserves the parity of n.] A010873(a(n)) = A010873(n). [a(n) mod 4 = n mod 4.] A001511(a(n)) = A001511(n) = A055396(A277330(n)). [In general, the 2-adic valuation of n is preserved.] A010060(a(n)) = A011655(n). a(n) <= n. For n >= 2, a((2^n)+1) = (2^n) - 3. The following two identities are so far unproved: For n >= 2, a(3*A000225(n)) = a(A068156(n)) = 5. For n >= 2, a(A068156(n)-2) = A062709(n) = 2^n + 3. (End) EXAMPLE In this example, binary numbers are given zero-padded to four bits. a(2) = 2a(1) = 2 * 1 = 2. a(3) = a(1) XOR a(2) = 1 XOR 2 = 0001 XOR 0010 = 0011 = 3. a(4) = 2a(2) = 2 * 2 = 4. a(5) = a(2) XOR a(3) = 2 XOR 3 = 0010 XOR 0011 = 0001 = 1. a(6) = 2a(3) = 2 * 3 = 6. a(7) = a(3) XOR a(4) = 3 XOR 4 = 0011 XOR 0100 = 0111 = 7. MATHEMATICA recurXOR[0] = 0; recurXOR[1] = 1; recurXOR[n_] := recurXOR[n] = If[EvenQ[n], 2recurXOR[n/2], BitXor[recurXOR[(n - 1)/2 + 1], recurXOR[(n - 1)/2]]]; Table[recurXOR[n], {n, 0, 100}] (* Jean-François Alcover, Oct 23 2016 *) PROG (Scheme, with memoization-macro definec) (definec (A264977 n) (cond ((<= n 1) n) ((even? n) (* 2 (A264977 (/ n 2)))) (else (A003987bi (A264977 (/ (- n 1) 2)) (A264977 (/ (+ n 1) 2)))))) ;; Where A003987bi computes bitwise-XOR as in A003987. (Python) class Memoize: def __init__(self, func): self.func=func self.cache={} def __call__(self, arg): if arg not in self.cache: self.cache[arg] = self.func(arg) return self.cache[arg] @Memoize def a(n): return n if n<2 else 2*a(n//2) if n%2==0 else a((n - 1)//2)^a((n + 1)//2) print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 27 2017 CROSSREFS Cf. A000225, A001511, A002487, A003987, A010060, A011655, A048675, A055396, A125184, A248663, A260443, A265397, A277330. Cf. A023758 (the fixed points). Cf. also A068156, A168081, A265407. Cf. A277700 (binary weight of terms). Cf. A277701, A277712, A277713 (positions of 1's, 2's and 3's in this sequence). Cf. A277711 (position of the first occurrence of each n in this sequence). Cf. also arrays A277710, A099884. Sequence in context: A049073 A076388 A354988 * A109680 A277826 A319653 Adjacent sequences: A264974 A264975 A264976 * A264978 A264979 A264980 KEYWORD nonn,look AUTHOR Antti Karttunen, Dec 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 18:02 EST 2022. Contains 358588 sequences. (Running on oeis4.)